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Why do females of so many socially monogamous spe-
cies regularly engage in matings outside the pair bond?
This question has puzzled behavioural ecologists for
more than two decades. Until recently, an adaptionist’s
point of view prevailed: if females actively seek extra-
pair copulations, as has been observed in several spe-
cies, they must somehow benefit from this behaviour.
However, do they? In this review, we argue that adaptive
scenarios have received disproportionate research at-
tention, whereas nonadaptive phenomena, such as
pathological polyspermy, de novo mutations, and ge-
netic constraints, have been neglected by empiricists
and theoreticians alike. We suggest that these topics
deserve to be taken seriously and that future work would
benefit from combining classical behavioural ecology
with reproductive physiology and evolutionary genetics.

Costs and benefits of female extra-pair mating

Mating outside the social pair bond seems obviously adap-
tive for males, but the benefit to females is less clear
because it does not increase the number of offspring that
they produce. Given that active female extra-pair mating is
often found, behavioural ecologists have sought explana-
tions for this behaviour. Numerous adaptive explanations
have been proposed [1,2], yet general support for these
hypotheses remains limited [3-5]. Most of the research has
been conducted in a framework of adaptionist thinking:
the fact that females show active extra-pair mating must
mean that they benefit from this behaviour. Nonadaptive
explanations [6] were rapidly discarded [7,8] and then
apparently forgotten ([6] was not cited in the extra-pair
paternity literature between 1995 and 2011). However,
several of the most powerful empirical tests of adaptive
explanations have yielded puzzling results [9-11], even
suggesting that female extra-pair mating behaviour is
detrimental to females (behaviour we refer to as maladap-
tive; see Glossary). Moreover, a first empirical test of a
nonadaptive explanation [6] provided support for the idea
that female promiscuity could evolve even when it has
negative consequences to females [12]. These two develop-
ments suggest that a broader spectrum of hypotheses
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should be evaluated, including models in which genetic

constraints prevent the evolution of optimal behaviour.
Adaptive hypotheses for female extra-pair mating have

focussed on a range of possible benefits, yet there are

Glossary

Adaptive (adaptationist) hypothesis: explanations that a particular trait has
evolved to increase an individual’s fitness (see ‘individual fitness’ below).
Antagonistic pleiotropy: when alternative genetic variants (alleles) affect
multiple phenotypic traits under opposing selection pressures (e.g., an allele
has beneficial effects on trait 1 but detrimental effects on trait 2); such traits can
be found within one sex (intrasexual antagonistic pleiotropy), or across the
sexes (intersexual antagonistic pleiotropy); in the latter, it can be the same
phenotypic trait expressed in each sex that is under opposing selection.
Compatible genes: alleles that increase the fitness of an organism only when
combined with a particular set of other alleles and, therefore, the fitness
benefits normally are not heritable; these alleles contribute to nonadditive
genetic variance (e.g., epistasis), which is part of the phenotypic variance.
Genetic constraint: limitations to the adaptation of an organism due to its
genetic architecture.

Genetic correlation: correlation between two traits that arises from shared
genetic effects (because the traits are affected by the same alleles); such
genetic correlation can be found within one sex (within-sex genetic correlation)
or across the two sexes (cross-sex genetic correlation; here, the genetically
correlated traits can be the same trait expressed in males and in females).
Good genes: alleles that directly increase the fitness of an organism, so that the
fitness benefits are heritable; these alleles contribute to additive genetic
variance, which is part of the phenotypic variance.

Individual fitness: the contribution of an individual to the gene pool of future
generations. Fitness benefits are often divided into direct (nongenetic) benefits
(e.g., obtaining food) and indirect (genetic) benefits (e.g., obtaining ‘good
genes’). Note that, in the context of extra-pair mating, copulations do not have
to lead to extra-pair fertilisations for the female to obtain direct benefits [71].
Intralocus sexual conflict: when opposing selection pressures act on allelic
variation at one gene locus, because one allele enhances the fitness of males
whereas the other allele enhances the fitness of females.

Linkage disequilibrium due to assortative mating: nonrandom mating with
regard to phenotypes (e.g., promiscuous females mate with promiscuous
males) leads to an association between alleles that influence those phenotypes
(e.g., alleles for male promiscuity and alleles for female promiscuity will often
be found in the same individuals).

Nonadaptive (maladaptive) hypothesis: explanations for the evolution or
maintenance of a particular trait or behaviour despite the fact that it decreases
the fitness of an individual (see ‘individual fitness’ above).

Oligospermy: male fertility condition that leads to scarcity of sperm cells,
which could result in a reduced ability or inability to fertilise eggs.
Polyspermy: more than one sperm cell penetrates the egg membrane, usually
due to an excessive supply of sperm. Fertilisation by more than one sperm leads
to a nonviable zygote because of an abnormal copy number of chromosomes
(pathological polyspermy). In birds, typically many sperm penetrate the egg
membrane (referred to as physiological polyspermy) but typically the nucleus of
only one sperm fuses with the nucleus of the egg (hence, the analogue of
pathological polyspermy in birds is polyspermic fusion of nuclei).

Polygenic trait: a character that is controlled by numerous loci (genes); in
contrast to a monogenic trait, which is controlled by one locus.

Promiscuity: used as short for an increased propensity to copulate with
multiple individuals (also outside the pair bond); here not used to imply
indiscriminate mating.
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Table 1. Possible benefits and costs associated with female extra-pair mating

Good or compatible genes (genetic bengfits) [1-4,72]
Avoiding inbreeding (with related partner) [22,23]
Inclusive fitness gain by extra-pair mating with kin [73]
Fewer infertile eggs (fertility insurance) [30]
Avoid infanticide by other males [46]
Reduced harassment (convenience polyandry) [5]
Increased care (by extra-pair males) [71]
Access to resources held by neighbours [75]
Securing a future partner [76]
Bet-hedging benefits via offspring diversity [77]
Beneficial sexually transmitted microbes [79]

also many possible costs associated with this behaviour
(Table 1). Some of these costs, such as the greater likeli-
hood of contracting a sexually transmitted disease, have
been posited for several decades [13] and, yet, have been
largely ignored empirically. Most of these costs and ben-
efits have been discussed extensively elsewhere (see the
references in Table 1), so we here focus on reviewing the
current support for the hitherto most widely accepted
adaptive explanations. We then highlight several possible
costs that have received little attention within the prevail-
ing framework of adaptive thinking. Finally, we outline the
most plausible models of genetic constraint that could
explain how active female extra-pair mating could persist
even if it is detrimental to female fitness.

Do females obtain genetic benefits?

‘Genetic benefit models’ suggest that females obtain either
good genes or compatible genes from extra-pair matings,
and this idea has been the focus of multiple reviews (e.g.,
[3,5,14-17]). Variants of the genetic benefit hypothesis
have been tested in a variety of species, using one or a
combination of the following approaches.

First, the occurrence of extra-pair paternity has been
related to variation in adult male traits such as age,
condition, immune response, and the expression of orna-
ments. The rationale being that female choice for partly
heritable indicators of male viability and fitness provides a
paternal genetic contribution to offspring survival, attrac-
tiveness, or competitive ability. The most generally
reported pattern is that extra-pair sires are older and
larger than males that do not sire extra-pair offspring
[3,18]. However, it remains controversial whether this is
necessarily indicative of a good genes benefit [19-21].

The second approach, used to test the genetic compati-
bility or inbreeding avoidance hypothesis, has been to
investigate whether extra-pair paternity is more common
when partners are genetically more similar to each other.
This pattern has been found in some species (e.g., [22,23]),
making the avoidance of inbreeding a likely adaptive
explanation for these cases. Less clear evidence has
emerged from studies testing whether the genetic similar-
ity between the female and the extra-pair partner is lower
than that between the female and her social partner
(reviewed in [16], but see also [24]). For the latter kind
of studies, methodological artefacts arising from paternity
assignment probabilities must also be considered [25].

De novo deleterious mutations [19,20]
Inbreeding depression [73]
Increased embryo mortality (polyspermy) [37]
Punishment or aggression by social mate [74]
Increased harassment (Box 3)

Loss of care (by social mate) [4]
Risk of losing the current partner

Increased sibling competition [78]
Sexually transmitted diseases [13]

The third and most direct approach to test genetic
benefit models is to compare fitness-related traits of ex-
tra-pair young relative to those of within-pair young. Al-
though many studies have suggested that extra-pair
offspring do better in one way or another (e.g., survive
better, are more heterozygous, are in better condition, or
have a better immune response), in some of the best-
studied species if anything the opposite effect is found
[9-11,26]. Only one out of four studies that measured
lifetime fitness of offspring (arguably the best measure
of female genetic benefits) found that extra-pair offspring
did better [27], whereas in the three other studies, they did
considerably worse [9-11]. A general problem with this
approach is that such findings can be confounded by un-
controlled maternal effects (Box 1).

In sum, the available evidence raises doubts about the
general applicability of the genetic benefits hypothesis
and, despite much work in a variety of socially monoga-
mous species from different taxa, the evidence for in-
creased offspring fitness through paternal genetic
contributions remains limited. When looking at the liter-
ature beyond the socially monogamous species, there is
also little support for genetic benefits of mating with
several males. A recent meta-analysis [28] of experimental
studies revealed a weak and nonsignificant positive effect
of multiple mating on offspring performance (d =0.12,
P =0.28, n = 16 species) when excluding other sources of
benefits (such as genetic diversity in social insects [29]).

Do females benefit from fertility insurance?
Failed support for the genetic benefit hypothesis has led to
increased popularity of the ‘fertility insurance hypothesis’
[14,30,31]. It has often been taken for granted that extra-
pair mating provides fertility insurance benefits, but a
recent review [30] rightly argues that benefits are obtained
only under specific circumstances, (e.g., when the partner
of the female is truly infertile). However, such male infer-
tility is expected to be a rare phenomenon (because of
strong selection against infertility), and it is unlikely that
infertility is detected by females from male indicator traits,
such as ornamentation [32,33]. This would mean that,
although all females would have to pay the potential costs
of extra-pair mating, few would obtain a benefit.
Noticeably, the fertility insurance debate [30] has
been centred on possible adaptive explanations for female
extra-pair mating, while neglecting phenomena that might
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Box 1. Do maternal effects confound paternal genetic
effects?
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Box 2. The balance between oligospermy and pathological
polyspermy: a set of hypotheses (H) and tests (T)

The comparison of the fitness of within- and extra-pair offspring
from the same brood or litter is the most straightforward test of the
genetic benefits hypothesis, because many confounding factors that
also influence fitness can be excluded. Half-siblings that grow up in
the same brood differ in paternal genes or in their level of
inbreeding or heterozygosity, but share the same environment,
the same social parents, and the same maternal genes. However,
fitness differences between within- and extra-pair offspring can still
be due to parental effects, for example, if males or females invest
differentially in the two types of offspring. Although this might seem
unlikely [80] and might also lead to the opposite effect that extra-
pair young do worse, recent work provides evidence for an
important maternal effect that might lead to higher fitness of
extra-pair young independent of their paternal genotype.

In many species, early-born or early-hatched offspring outperform
their later born or hatched brood or littermates. An early start gives
them a competitive advantage, which can lead to faster growth, better
condition, and increased chances of survival. Furthermore, in birds,
egg content (e.g., resources such as amount of yolk or hormones [81])
often differs depending on the laying sequence, either as a
consequence of changes in female resource availability, or as a result
of female reproductive decisions, and this also affects offspring
performance ([82]).

There is currently no evidence that extra-pair eggs differ from
within-pair eggs in size or content, but in some species extra-pair
offspring are indeed more common among early laid eggs or early-
hatched offspring ([83-85], but see [86,87]), and controlling for this
effect reduced the observed difference between extra-pair and
within-pair offspring [83,85].

render extra-pair mating maladaptive. Although mating
with multiple males can insure against infertility and
oligospermy (i.e., a low concentration of sperm) of the social
partner [30], it could also increase the risk of embryonic
death and, hence, reduced female fecundity through path-
ological polyspermy (i.e., fertilisation of an egg by more
than one sperm) [34-37]. When the DNA of two sperm
enters the nucleus of the egg simultaneously, a triploid
embryo can result, which is normally either inviable
[34,36] or sterile [38].

Extra-pair copulations might increase the risk of path-
ological polyspermy because: (i) these copulations are ad-
ditional to within-pair copulations; (ii) extra-pair
copulations often transfer greater numbers of sperm than
within-pair copulations [39]; and (iii) the partner might
respond flexibly to a threat of sperm competition by in-
creasing copulation frequency and potentially ejaculate
size [40,41]. However, whether extra-pair copulations in-
crease the risk of polyspermy remains to be shown (Box 2)
and will depend on patterns of sperm use and storage by
the female.

Iflow sperm numbers increase the risk of eggs not being
fertilised whereas high sperm numbers increase the risk of
pathological polyspermy, then females are selected to take
up, or store, intermediate numbers of sperm, and reject
sperm if there is too much (Figure 1 [37,42]). In egg-laying
species such as birds, where the cost of laying an infertile
egg should be approximately equal to the cost of laying an
egg where the embryo dies of triploidy, the female optimum
is expected to lie where the greatest number of surviving
embryos is produced (Figure 1). Sperm numbers lower
than that should be optimal for female mammals, where
the cost of aborting a triploid embryo might be (much)
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H1: sperm numbers on the perivitelline layer (PVL) increase with
numbers of copulations
T1: quantify copulations and sperm numbers following [88,89]

H2: infertility rates decrease and rates of pathological polyspermy
increase with the number of sperm on the PVL (Figure 1, main text)
T2: quantify these rates in relation to sperm numbers on the PVL
following [36,89]

H3: females optimise sperm uptake to maximise hatching success
T3: test whether females on average reach their optimum indicated
in Figure 1 (main text)

H4: infertility rates increase and rates of pathological polyspermy
decrease when preventing sperm transfer during extra-pair copula-
tions

T4: study reproduction in communal aviaries: enforce monogamy of
one focal female by fitting all extra-pair males with ‘condoms’
(following [90]) and study effects on fertility

H5: female responsiveness to extra-pair males increases when
rates of within-pair courtship or within-pair copulations or within-
pair sperm transfer decreases

T5: sterilise males, put ‘condoms’ or chemically castrate males
(antiaphrodisiac) and study effects on extra-pair responsiveness

H6: female responsiveness to extra-pair males increases when
experiencing hatching failure

T6: manipulate hatching success and study extra-pair mating
behaviour following [31].

higher than the cost of an egg not getting fertilised. How-
ever, higher sperm numbers should be optimal for males
[37,42,43], creating sexual conflict over optimal rates of
infertility versus polyspermy. In polyandrous species,
males are under selection to stack the odds of fertilisation
in their favour by inseminating large numbers of sperm,
even if this is partly deleterious to female fecundity [37,43].
Current knowledge about natural rates of oligospermy and
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Figure 1. Hypothetical rates of infertility and polyspermy as a function of sperm
numbers. The proportion of eggs that fail to be fertilised declines with sperm
numbers inseminated, whereas the frequency of embryo death due to pathological
polyspermy increases. The black arrow shows the optimal solution for the female
(maximum of surviving embryos), if the costs of both causes of failure are the
same to the female. Note that sperm competition among males will favour males
that inseminate more sperm than is optimal for the female.



polyspermy is insufficient to judge whether beneficial or
detrimental effects of multiple mating have the upper hand
[37]. We suggest observational and experimental
approaches to address this problem (Box 2).

A further issue surrounding sperm production illus-
trates the problem that maladaptive scenarios have re-
ceived insufficient attention. In the germ line, the number
of de novo mutations, the majority of which should be
nonbeneficial, increases linearly with the number of cell
divisions [44]. Therefore, old males and also males with
high levels of sperm production are expected to produce
sperm carrying more detrimental de novo mutations com-
pared with males whose germ cells have gone through
fewer mitotic divisions [19,20,44,45]. Given that successful
extra-pair sires are typically older [18] and might also have
higher levels of sperm production, engaging in extra-pair
copulations might be detrimental for females in terms of
inheriting ‘bad genes’ for their offspring. In other words,
having a social partner with low levels of sperm production
can carry a risk of some eggs not getting fertilised, yet the
offspring of such males would inherit fewer de novo muta-
tions because their germ cells go through fewer cell divi-
sions. Further work is necessary to understand the
likelihood and detriment to female fitness of either of these
scenarios.

Extra-pair mating to avoid infanticide

In species where infanticide occurs, female extra-pair mat-
ing might have evolved to avoid infanticide by extra-pair
males. Given the large direct benefits this entails, this
adaptive explanation is rather uncontroversial for those
systems where it applies.

In many species, offspring are vulnerable to infanticide
by unrelated males. Such infanticide is adaptive for males
if it increases their chances to mate with the mother of
these offspring. This is often the case, because a female
that loses her young will enter oestrus sooner (in mam-
mals) or can lay a replacement clutch (e.g., in birds).
Similarly, in group-living animals, offspring can be vulner-
able to aggression from unrelated males, for example when
competition for essential resources, such as food, shelter, or
mates, is strong. Even if this does not lead to immediate
death, it can negatively affect offspring fitness. In species
where the risk of infanticide or aggression is high, female
promiscuity might have evolved as an adaptive strategy to
protect their offspring [46]. This hypothesis predicts that
any male that has mated with a female will refrain from
infanticide or aggression, because he might be the father of
the offspring.

Although the hypothesis has not been tested directly,
there is circumstantial evidence in support. For example,
socially polyandrous female bank vole (Myodes glareolus)
populations show higher recruitment compared with so-
cially monandrous populations [47], presumably because of
reduced infanticide in the former. A review of studies on
mammals found that female promiscuity was more com-
mon in species in which infanticide occurred (e.g., 62% of 47
primate species) than in species where infanticide was
unlikely (9% of 11 primate species) [46].

An interesting twist to the story is that dominant males
might even ‘encourage’ female mating with subordinate
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males in the group, if those subordinates can help protect
the offspring against aggression by immigrant males [48].
Incidentally, infanticide might also have led to the evolu-
tion of social monogamy in mammals, because biparental
care reduces the period during which offspring are vulner-
able to infanticide [49].

In birds, female extra-pair behaviour might also be
associated with the risk of infanticide. Tree swallows
(Tachycineta bicolor) are one of the most promiscuous
birds: most broods contain extra-pair offspring and the
young in a brood are often sired by several extra-pair
males. Infanticide is not uncommon in tree swallows: if
a new male takes over a nest after the female has started
incubation, the male will wait until the eggs hatch and
then remove the newly hatched offspring, one by one.
Experimental work showed that if the new male arrived
before the female had finished egg laying, he never com-
mitted infanticide, presumably because he copulated with
the female [50]. Whether this explains the high level of
extra-pair paternity is unknown, but it is plausible and
would also explain why females accept copulations from
many different males, including floaters [51].

The genetic constraint argument

We do not consider further the roles of male harassment
and forced mating (Box 3), because our review focusses on
explanations for active female involvement in extra-pair
mating. Instead, we now turn to the idea that female extra-
pair behaviour might be maladaptive. Are there species
where females show active extra-pair mating behaviour
although it is detrimental to them [9-11]? If so, how did
such behaviour evolve?

Box 3. Convenience polyandry and harassment

The hypothesis of convenience polyandry [91] states that females
might agree to mate with multiple males only to minimise the costs
arising from male harassment. Although this cannot explain cases
where females actively seek extra-pair copulations, convenience
polyandry might be considered as another adaptive explanation for
female extra-pair mating, because reduced resistance by females
might minimise the costs of being harassed by males [5]. Although
this hypothesis has received support in a range of studies on
promiscuously mating insects [92], more empirical work is needed
to determine whether it is applicable to systems with social
monogamy and extra-pair mating, where there might be a capacity
for individual recognition. If males can increase the efficiency of their
pursuit of extra-pair paternity by strategically allocating their efforts to
those females that have shown low levels of resistance during
previous encounters, then females lowering their resistance might
suffer an increase in the total amount of harassment experienced.
Hence, future studies should test the extent to which males
strategically invest extra-pair mating effort to different females.

In some species, such as those with intromittent copulatory
organs [93], extra-pair paternity results from forced copulations.
This is beyond the scope of this review, because there is no active
female behaviour that requires further explanation [94]. However, in
other species, it seems that females actively solicit courtship
competition among males [5]. Although the resulting male beha-
viour resembles harassment, females might benefit by selecting the
most persistent pursuer [95]. However, we note that any benefit of
such behaviour in terms of producing more persistent sons is
included in the fitness measures of some of the empirical studies
testing ‘genetic benefit models’ mentioned above, although no
study in such a system has measured differences in sexual
behaviour among offspring.
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Figure 2. Pleiotropic gene effects and the existence of female extra-pair mating
behaviour. lllustration of how the concepts of intra- and intersexual pleiotropy can
explain the existence of female extra-pair mating behaviour as genetic corollaries
of either male extra-pair mating success or female fertility.

Genetic constraint models for extra-pair mating propose
that the alleles that cause maladaptive female promiscuity
have additional pleiotropic effects that are beneficial and,
hence, maintain the alleles in the population. To test this
idea, we need to identify the beneficial side effects of such
alleles. Note that this does not require knowing the specific
alleles that affect female extra-pair mating. The genetic
constraint of interest can be studied by estimating genetic
correlations between female extra-pair mating propensity
and other traits that we suspect to be affected by the same
genes. In the following, we distinguish between two cases,
depending on whether these other traits are expressed by
the other sex (i.e., in males; intersexual pleiotropy) or by
the same sex (i.e., in females; intrasexual pleiotropy).

Intersexual antagonistic pleiotropy

The hypothesis of ‘intersexual antagonistic pleiotropy’
refers to genes that have pleiotropic effects on the two sexes,
such that they enhance fitness in one sex, while reducing it
in the other. Here, the hypothesis argues that nonadaptive
female extra-pair mating is caused by alleles under strong
positive selection in males, because they enhance male
extra-pair paternity gains (Figure 2). In other words, female
and male promiscuity might be homologous traits that are
influenced by the same set of genes, with alleles contributing
to male extra-pair mating success and also facilitating
female extra-pair behaviour (note that a similar argument
has been made to explain female orgasm; Box 4).

When this hypothesis was proposed for multiple mating
in general (rather than for extra-pair mating specifically)
in a short commentary in 1987 [6], the hypothesis was
rapidly criticised as unrealistic [8]. The main criticism was
that female and male promiscuity are unlikely to be ho-
mologous traits, because the mating behaviours of the two
sexes are often different. This might be valid for species
where males and females indeed take different roles in
mating and do not form pair bonds. However, in socially
monogamous species, the behavioural repertoire of both
sexes is often more similar. If pair bonding evolves de novo,
it is likely to evolve simultaneously in the two sexes based
on the same molecular mechanisms (but see, e.g., [52]). Any
genetic mutation that strengthens or weakens the pair

460

Trends in Ecology & Evolution August 2014, Vol. 29, No. 8

Box 4. The parallel debate about female orgasm

Following Lloyd’s controversial book on female orgasm in humans
[96], there has been a lively debate about whether female orgasm
evolved as a by-product of strong selection on the male orgasm and
ejaculation system [97] or serves adaptive functions of its own (e.g.,
pair-bond hypothesis or sire choice hypothesis, reviewed in [67]). A
recent quantitative genetic study on male and female orgasmic
function in humans found no significant between-sex genetic
correlation [97-99], providing no support for the idea that female
orgasm exists as an epiphenomenon of male orgasm.

However, the absence of a between-sex genetic correlation does
not disprove the by-product hypothesis. It is possible that persistent
selection on male orgasmic function keeps the genes involved in a
monomorphic state (i.e., novel alleles associated with reduced
orgasmic function are always driven to extinction). Given that only
polymorphic loci contribute to genetic variance (and, hence,
possible covariance between the sexes), the effect of these
monomorphic genes cannot be quantified, although these genes
still might be responsible for why females experience orgasms [67].
Only experiments where a certain gene is knocked out or its
translation reduced by RNA interference might reveal such under-
lying pleiotropy (Figure 2, main text).

Equally problematically, if a positive genetic correlation between
the sexes is found, this does not imply that the trait in one sex
evolved only due to correlated selection on the trait in the other sex.
Hence, female orgasm might or might not serve an adaptive
function irrespective of its genetic architecture.

bond by modifying this molecular machinery shared
between the sexes might then create similar effects in both
sexes. Hence, in species where extra-pair mating is
primarily a question of the strength of the pair bond, a
positive genetic correlation between female and male ex-
tra-pair mating propensity might be expected.

The between-sex genetic correlation (ryy) for female
and male extra-pair mating has recently been estimated
in a captive population of a pair-bonding species, the zebra
finch (Taeniopygia guttata) [12]. The obtained value of
rvr=0.6 suggests that a substantial proportion of the
additive genetic variance for male extra-pair mating suc-
cess has pleiotropic effects on female extra-pair mating
propensity, such that the latter could evolve largely as a by-
product of strong selection on the former. Such a strong
genetic correlation argues for between-sex pleiotropy, be-
cause linkage disequilibrium caused by assortative mating
between promiscuous males and females should at best
produce a weak positive correlation. This is because assor-
tative mating is far from complete (due to the many within-
pair young) and because the heritability of the level of
extra-pair mating that leads to extra-pair paternity is
small [12,53,54]. However, only a selection experiment
that tries to decouple male from female promiscuity could
fully reveal the degree of pleiotropy.

Strong positive estimates of ryjr might be the default, if
the focal traits are homologous. A meta-analysis [55] found
a mean ryp=0.77 for behavioural traits, which is not
different from that for morphological traits (ryr=0.80).
Somewhat lower genetic between-sex correlations might
be expected for traits that are strongly sexually dimorphic
(see Figure 4 in [55]). This calls for caution, because the
propensity to engage in extra-pair mating is probably
higher in males than in females of most species (e.g.,
[56,57]). This observation might also be interpreted as
the result of past antagonistic selection on the expression
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Figure 3. Phenotypic correlates of extra-pair mating behaviour in humans are
shared between the sexes. The scatterplot shows male and female correlation
coefficients between infidelity (lack of relation exclusivity) and the Big Five
personality traits across ten different regions of the world: (1) North America (N =
3525); (2) South America (N=622); (3) Western Europe (N=2269); (4) Eastern
Europe (N=1923); (5) Southern Europe (N=1074); (6) Middle East (N =885); (7)
Africa (N =800); (8) Oceania (N =804); (9) South and Southeast Asia (N =211); and
(10) East Asia (N =1075). N represents the sum of male and female sample sizes.
Data from [100].

of promiscuous behaviour in the two sexes, moving them
further apart and bringing them closer to their sex-specific
optima (monogamy for females and promiscuity for males).

Although ryr has not been estimated for extra-pair
mating propensity in humans, numerous studies have
focussed on describing phenotypic correlates (e.g., person-
ality traits) related to this propensity (Figure 3). It is
noteworthy that these correlates go in the same direction
for males and females, suggesting that much of this beha-
vioural syndrome is shared between the sexes. It is
also plausible that these correlated traits show positive
between-sex genetic correlations, such that, for instance,
risk-taking fathers will tend to sire risk-taking daughters.

A frequently used argument is that strong antagonistic
selection will promote the evolution of sex-specific regula-
tion of the underlying genes (leading to sexual dimorphism
and possibly reducing ryr). However, complex quantitative
genetic traits such as personality are likely to depend on
hundreds of genes [58], such that a complete sex-specific
regulation of allelic effects at all these loci will be difficult,
if not impossible, to achieve. The example of human infi-
delity (Figure 3) is particularly striking in that respect. A
vast number of genes are likely to affect each personality
component that will, in turn, influence the probability of
engaging in extra-pair mating. However, once such a ge-
netic correlation is in place, selection will favour females
that ‘make the best of a bad job’, for instance by becoming
more choosy and seeking good-gene benefits.

The largest handicap for measuring ry is the difficulty
in obtaining good measures of an individual’s propensity to
engage in extra-pair mating. At the one extreme lie human
questionnaire studies that seem capable of capturing this
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variation, as evidenced by high estimates of the heritabili-
ty of this variation [59,60]. At the other extreme, field
studies of birds that are limited to quantifying the realised
amount of extra-pair paternity (rather than the underlying
propensity, or engagement in extra-pair copulations, which
in itself is rarely quantified) have found low heritability
estimates [53,54]. This is expected, because paternity
(from the female perspective) will additionally depend
on the mating opportunities of a female, mate guarding
by her partner, sperm competition and other postcopula-
tory processes. Hence, extra-pair paternity in a brood will
only partly reflect the underlying propensity of a female to
engage in extra-pair matings. Likewise, the extra-pair
mating success of a male might strongly depend on the
mating preferences of the available females and only to
some extent on his extra-pair mating effort (his intrinsic
propensity). Studies in captivity have the advantage that
behavioural propensities such as the responsiveness of a
female to extra-pair courtship or the extra-pair mating
effort of a male can be measured directly. Higher herit-
abilities of these measures [12] will enable estimation of
between-sex genetic correlations with smaller amounts of
error.

Despite the difficulty of measuring ryy in the wild,
it might be worth testing whether male relatives (e.g.,
brothers) of females that have extra-pair offspring have
a higher fitness through extra-pair paternity compared
with male relatives of faithful females.

Intersexual antagonistic pleiotropy could be considered
a form of indirect selection, where all the male carriers of
an allele for promiscuity make up for the lower fitness of
the female carriers. Note that this is different from indirect
selection through ‘sexy son’ benefits [61,62], where the
promiscuous behaviour of the female per se increases
the attractiveness and, hence, fitness of her sons (leading
to more grandchildren) via a paternal genetic effect. Under
sexually antagonistic pleiotropy, when an evolutionary
equilibrium is reached, the ‘promiscuous son benefit’
(adaptive promiscuous behaviour by males) will be com-
pensated by a ‘promiscuous daughter cost’ (maladaptive
promiscuous behaviour by females). Furthermore, the sce-
nario allows for the female behaviour to be truly maladap-
tive (due to costs listed in Table 1 leading to fewer
grandchildren).

Intrasexual antagonistic pleiotropy

The hypothesis of ‘intrasexual antagonistic pleiotropy’
argues that alleles for female extra-pair mating are main-
tained because these alleles have pleiotropic effects on
female fecundity (Figure 2) or on female behaviours that
are under positive selection, such as receptivity towards
the social mate [4,12], the ability to divorce, or novelty-
seeking behaviour [63].

A review on the costs and benefits of female extra-pair
mating behaviour [4] suggested that alleles for female
resistance towards extra-pair males do not spread in a
population because these alleles also induce female resis-
tance towards their partners, thereby leading to infertility
and reduced fitness. This idea of a genetic correlation
between female extra-pair and within-pair responsiveness
has been tested and tentatively rejected for captive zebra
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finches [12], yet the hypothesis deserves further examina-
tion, especially in species that form weaker and more
ephemeral pair bonds.

Copulation frequency could evolve as a genetic corollary
of female fecundity [64], because copulations might be
proximately linked to stimulating reproductive processes
[65,66]. Likewise, the degree of female sexual arousal
might evolve with female fertility, if arousal serves the
function of enhancing sperm uptake ([67], but see the issue
of polyspermy discussed above). Under these scenarios,
female extra-pair mating could evolve as a by-product
of selection on fertility via an increased propensity to
copulate.

Extra-pair mating behaviour might also result from a
weakness of the social pair bond. Weaker pair bonds might
evolve together with the ability to divorce, and adaptively
partition reproductive investment among different part-
ners. Elevated levels of extra-pair paternity in domesticat-
ed [12] as compared with wild-caught zebra finches [68]
might be a correlate of such weakened pair bonds. Domes-
tication might lead to weaker pair bonds because captive
breeding often involves force pairing, divorce, and repair-
ing. Such procedures might favour individuals that form
only weak pair bonds and that quickly repair and repro-
duce after separation from the previous partner.

Finally, the incidence of extra-pair paternity has been
correlated with novelty seeking and exploration behaviour
[63,69], with bold and, hence, more risk-taking males more
likely to sire extra-pair young. However, no such relation
has so far been confirmed for females (but see Figure 3 and
discussion above). Positive selection on risk-taking behav-
iour might enhance extra-pair mating propensities, but
this would not provide a sufficient explanation for the
phenomenon of extra-pair mating itself.

The female promiscuity ‘syndrome’: concluding
remarks and future directions

Behavioural ecology provides a framework for putting
adaptive and non-adaptive explanations through rigor-
ous tests. This provides greater insight than the alterna-
tive of inventing adaptive stories to explain observations.
Therefore, it is worrying that, to further our understand-
ing of extra-pair behaviour, adaptive explanations have
received a huge amount of attention (good genes, heterozy-
gosity, or fertility insurance), whereas nonadaptive argu-
ments (intersexual antagonistic pleiotropy, pathological
polyspermy, de novo mutations, or sexually transmitted
diseases) have been largely ignored. Potentially maladap-
tive behaviour deserves the special attention of behavioural
ecologists.

Genetic constraint models require more emphasis on
quantitative genetics [70], and a better understanding of
possible constraints requires more proximate knowledge
about the phenotype of interest. We argue that, to test the
genetic constraint models, we need to study in greater
detail the behavioural and physiological ‘syndrome’ of
female promiscuity, especially in species that form short-
or long-term monogamous pair-bonds. Genetic constraint
hypotheses are still wide open for empirical testing. Quick
progress can probably be made only in captive or seminat-
ural settings, because it is easier to carry out detailed
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observations, standardised personality tests, and experi-
mental manipulations.

Although studies of genetic correlations can check the
plausibility of constraint arguments, long-term studies of
fitness consequences from the wild are needed to assess
whether and under what circumstances female extra-pair
behaviour is adaptive or maladaptive.
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