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A central topic for conservation science is evaluating how human activities

influence global species diversity. Humanity exacerbates extinction rates.

But by what mechanisms does humanity drive the emergence of new species?

We review human-mediated speciation, compare speciation and known

extinctions, and discuss the challenges of using net species diversity as a

conservation objective. Humans drive rapid evolution through relocation,

domestication, hunting and novel ecosystem creation—and emerging technol-

ogies could eventually provide additional mechanisms. The number of species

relocated, domesticated and hunted during the Holocene is of comparable

magnitude to the number of observed extinctions. While instances of

human-mediated speciation are known, the overall effect these mechanisms

have upon speciation rates has not yet been quantified. We also explore the

importance of anthropogenic influence upon divergence in microorganisms.

Even if human activities resulted in no net loss of species diversity by balan-

cing speciation and extinction rates, this would probably be deemed

unacceptable. We discuss why, based upon ‘no net loss’ conservation litera-

ture—considering phylogenetic diversity and other metrics, risk aversion,

taboo trade-offs and spatial heterogeneity. We conclude that evaluating spe-

ciation alongside extinction could result in more nuanced understanding of

biosphere trends, clarifying what it is we actually value about biodiversity.
1. Introduction
Understanding and preventing biodiversity loss is of paramount importance to

humanity [1–3]. Over the last decade, it has been emphasized that conserva-

tion science and practice should consider net, rather than absolute, outcomes of

interventions [4–6]. For instance, McDonald-Madden et al. [5] state that for conser-

vation, in general, ‘gains and losses must both be presented as an auditable

conservation balance sheet’. There has been a proliferation of policies incorporating

the ‘no net loss’ principle, whereby negative impacts on biodiversity associated

with human activities are required to be compensated for by conservation actions,

theoretically resulting in a neutral net outcome for nature [7]. But globally, it

remains common to measure biodiversity declines via the proxy of absolute species

losses—more specifically, in terms of the numbers of macroscopic fauna and flora

species lost over time.

Both the total number of extant species, and the rate at which those species are

disappearing, are highly uncertain [8–10]. Approximately, 1.9 million species have

been described [11]. Estimates of the total number of eukaryotic species alive

include 5+3 million [10], 8.7+1.3 million [12], less than a million and more

than 10 million [11]. Best estimates of extinction rates fall are around 1.0–2.2% of

species totals per decade [10,12,13]. But human activities not only drive species

extinction. Palkovacs et al. [14] found that human activity is involved in ‘162 of

the 198 study systems in which contemporary trait change has been documented

in the wild’, and humans have been shown to mediate substantial speciation in

plants [15,16]. Such considerations raise the question: in what ways are humans

driving speciation alongside extinction, and what is the net anthropogenic
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Figure 1. Number of recorded animal and plant species extinctions (citations in main text); number of recorded established invasive, i.e. ‘relocated’ species (Global
Invasive Species Database [31]); number of domesticated species [32]. Light grey, since AD 1500; dark grey, during the Holocene.
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contribution towards global species diversity for all taxa?

Further, if it transpired that our overall impact on species diver-

sity was neutral, would this be acceptable? Here, we review the

literature pertaining to these questions.

Species can be considered ‘separately evolving meta-

population lineages’ [17], but there are numerous ways in

which different species are delimited. Speciation occurs when a

lineage splits into multiple reproductively isolated, genetically

distinct sub-populations (cladogenesis), but vagueness in species

delimitation means that there is grey area between sub-popu-

lations that have developed slightly different traits, and those

that are divergent lineages. It is consequently problematic to

define exactly when a speciation ‘event’ has occurred; i.e. when

one or more new species can be considered to have emerged

from those existing [18,19]. In turn, this complicates calculation

of speciation rates. Note that speciation, as a term, is not generally

applied to ‘anagenesis’ (i.e. where an entire lineage evolves suffi-

ciently over time to effectively become a new species), because

the net result is that species richness does not increase.

In this review, we consider anthropogenic activities that

result in populations becoming distinct from organisms of the

same species, under the criteria currently advocated by

evolutionary biologists, e.g. development of new traits, repro-

ductive isolation [17]. We, therefore, include instances of new

species emerging, and also anthropogenic mechanisms appar-

ently in the process of driving speciation. The literature on

speciation as a general evolutionary process is vast, and has pre-

viously been reviewed [19–23], so we emphasize that our focus

here is not speciation more broadly. Rather, we build upon the

emerging suggestions that human activities could significantly

influence speciation on a global scale [16,24], consider anthro-

pogenic speciation mechanisms, and discuss whether these

could be significantly influencing global species numbers.
(a) Known species extinctions
Human actions are the main cause of contemporary species

extinctions [11]. Although methods for estimating when
extinction has occurred are subject to uncertainty, and even

charismatic species can mistakenly be classified extinct [25],

the number of recorded species extinctions is almost certainly

lower than the true number, particularly as some species go

extinct before being described [10]. While the number of

extinction events approximately over the last 500 years is

not yet of the same magnitude seen during the ‘big five’

mass extinction events, the extinction rate is comparable,

and could result in a sixth mass extinction event within a

few centuries [8,26].

Mammals are perhaps the most well-researched group of

living organisms. Incorporating recently extinct species, there

are currently 5488 known species of mammal [27]. From the

Late Pleistocene (approx. 130 000 years ago) to approximately

AD 1000, 177 species of large mammal (more than 10 kg) are

known to have become extinct [28]. Estimates for the Holocene

(i.e. the last 11 500 years) suggest that 255 mammals became

extinct during that period [29]. Similarly, during the Holocene,

there have been 523 recorded bird species extinctions [29], of

which 129 became extinct since AD 1500 [30]. Although it is

not straightforward to determine what caused known extinc-

tions during these time periods, evidence often points to

humans [28].

During the more recent time period from AD 1500 to the

present day, approximately 784 extinctions have been docu-

mented [27,30]. They include: mammals (79), birds (129),

reptiles (21), amphibians (34), fish (81), invertebrates (359, of

which 291 were molluscs), plants (86) and Protista (1)

(figure 1) [27,30,33]. Comparably, Dirzo et al. [9] estimate that

322 species of vertebrate have become extinct since AD 1500,

but importantly, highlight that there has been a great loss of

invertebrate diversity that is much less studied. For example,

Régnier et al. [34] estimate that the actual number of mollusc

extinctions is double the IUCN estimate. In addition, it

should be noted that the number of species extinctions does

not capture the phylogenetic richness of those species,

e.g. the magnitude of the loss of evolutionary history

associated with ancient or highly diverse lineages.
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2. Human-mediated speciation
The process by which genotypes diverge has been studied

extensively, so data on background diversification (the differ-

ence between speciation and extinction rates) are available.

Plants have median diversification rates of 0.06 new species

per species per million years, rates for birds are estimated at

0.15, and mammals at 0.07 [11]. While it has been shown that

humans can drive contemporary evolution to a degree that is

significantly higher than that from natural causes [24,35], esti-

mates of speciation attributable to human activities do not exist

for most organisms.

We posit that human activities can directly or indirectly result

in reproductive barriers of various kinds (e.g. geographical,

physical) being created between sub-populations of an existing

species—or, in different selective pressures being applied to

specific members of a species (e.g. by age, size). In both cases,

the development of new traits could occur in sub-populations.

Given sufficient time this could, at least in some cases, result in

cladogenesis. We also assume that there will be some scenarios

in which the emergence of new traits, or even full speciation,

can be attributed primarily to reproductive isolation or selective

pressure caused by human activities, rather than a combination

of anthropogenic and non-anthropogenic factors. Demonstrating

that a given speciation event is human-mediated requires draw-

ing a direct causal link between anthropogenic impacts on a

population, the emergence of new traits in that population,

and eventually, genetic divergence. In this section, recognizing

that trait change can eventually lead to speciation, and that chal-

lenges exist in drawing conclusions as to whether any speciation

event is natural or anthropogenic, we review evidence for

human-mediated speciation mechanisms.
(a) Relocation
People have transported species to ecosystems in which they

are non-native, intentionally or otherwise, for millennia. The

establishment of alien invasive species is a threat to global bio-

diversity, to which many species endangerments are attributed

([36,37]; although see [38]). The Global Invasive Species

Database [31], while not comprehensive due to geographical

inequalities and biases in detection and survey effort, holds

records for 891 distinct invasive species (i.e. established in natu-

ral or semi-natural ecosystems or habitat, is an agent of change

and threatens native biological diversity), many of which are

established in more than one country (figure 2a).

Relocation is also a potential speciation mechanism. Some

relocated species undergo rapid evolution [41], which can even-

tually result in speciation over sufficient timescales [42,43]. For

instance, Whitney & Gabler [44] document 38 species that have

undergone rapid evolution following introduction, in some

cases within 10 years. Buswell et al. [45] found that 70% of intro-

duced plant species studied changed at least one morphological

trait (e.g. plant height) during a 150-year period in Australia.

Reznick et al. [46] found significant evolution in the life history

of guppies Poecilia reticulata (e.g. age of maturation), 11 years

after introduction to a new site. The introduction of non-native

organisms to provide biological control is another pathway by

which relocated species might themselves develop new traits,

such as the myxoma virus introduced to Australia to control

rabbit populations, and the Entomophaga maimaiga fungus intro-

duced to the USA from Japan [47]. What is not clear is how often

rapid evolution in such cases results in actual divergence.
Hybridization (reproduction between members of geneti-

cally distinct populations [18]) between native and relocated

plant species, or between two different relocated plant species,

can result in novel taxa, e.g. Helianthus annuus ssp. texanus
(USA), Senecio cambrensis (UK) [48]. Thomas [16] points out

that, through relocation and hybridization, more new plant

species have appeared in Europe than are documented to

have gone extinct over the last three centuries. Invading insects

have also been noted to drive evolutionary change in native

species via host-race formation, as potentially have invading

species of vertebrate [18,42]. Emerging evidence suggests that

hybridization may be an important factor in driving speciation

for both plant and animal species, and in some cases, compar-

able with the primary cause (adaptation), although the

proportion of hybrids that have resulted in speciation has not

yet been quantified [18,49]. Importantly, care should be taken

when comparing extinction rates over the distant past and

known instances of contemporary species emergence, as past

rates might be more difficult to estimate with accuracy than

those involving extant species [16].

(b) Domestication
Humans have domesticated 474 animal and 269 plant species

approximately over the last 11 000 years (figure 1) [32]. These

species encompass a variety of different breeds spread across

almost all countries in the world (figure 2b). Any species

that has been domesticated is subjected to altered selective

pressures, both deliberate and incidental (e.g. [50]).

Domestication has resulted in the documented emergence

of novel species: of the world’s 40 most important agricultural

crop species, six to eight can be considered entirely new [16].

Equally, beyond speciation, it has resulted in very large popu-

lations of species representing considerable genetic diversity

[51]. Within domesticated species, new traits can emerge: for

instance, the domestic dog Canis lupus familiaris is one of

the most morphologically diverse vertebrates, represented by

400 breeds [52]. Asian rice was domesticated approximately

8200–13 500 years before the present, and is among the

world’s most important crops. It could potentially be classified

into two distinct sub-species from a single evolutionary origin

[53]. Some Triticum (wheat) and Brassica species are entirely

new, through hybridization [16]. The full picture is compli-

cated—wheat has also decreased in diversity by some

measures since domestication [54], and extensive gene flow

between populations of domesticated species likely restricts

lineage diversification.

Domestication has, equally, led to increased human inter-

action with ‘pest’ species, altering selective pressures. For

instance, agricultural weeds can evolve resistance to commercial

herbicides, sometimes within 10 years of commercial deploy-

ment [55]. Although observed resistance represents new trait

development and not necessarily speciation, Palumbi [55]

discusses ‘Humans as the world’s greatest evolutionary force’.

(c) Hunting
Hunting drives new trait development in wild animal popu-

lations, influencing broader ecological dynamics [14,56],

which could eventually be a precursor to speciation in some

cases. Stenseth & Dunlop ([56], see also [57]) compared rate

of phenotypic change in 40 populations subject to human har-

vesting against the rate seen in 20 systems experiencing

selection from natural forces only (e.g. Darwin’s finches)

http://rspb.royalsocietypublishing.org/


190
0 170

0

16
0

00
0

15
5

00
0

15
0

00
0

14
5

00
0

14
0

00
0

13
5

00
0

13
0

00
0

12
5

00
0

20
02fi

sh
87

65

16
60

11
03

38
6

38
6

30
0

m
ol

lu
sc

s

cr
us

ta
ce

an
s

co
ra

ls
, p

la
nt

s,
 s

ea
w

ee
ds

, s
po

ng
es

am
ph

ib
ia

ns
, m

am
m

al
s,

 b
ir

ds
, r

ep
til

es

ot
he

r

gr
ou

p
no

. s
pe

ci
es

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

(b
)

(a
)

(c
) (d

)

Fi
gu

re
2.

Ex
am

pl
e

sp
at

ial
da

ta
se

ts
re

lev
an

t
to

hu
m

an
-m

ed
iat

ed
sp

ec
iat

ion
.(

a)
Re

lo
ca

tio
n—

nu
m

be
ro

fi
nv

as
ive

ali
en

sp
ec

ies
re

co
rd

ed
,b

y
co

un
try

(G
lo

ba
lI

nv
as

ive
Sp

ec
ies

Da
ta

ba
se

[3
1]

).
Hi

gh
es

tn
um

be
ro

fr
ec

or
ds
¼

87
6

sp
ec

ies
(U

SA
),

m
ed

ian
¼

26
sp

ec
ies

(n
ot

e
th

e
da

ta
ba

se
co

ns
tit

ut
es

pr
im

ar
ily

m
ac

ro
sc

op
ic

or
ga

ni
sm

s,
an

d
in

co
ns

ist
en

ts
ur

ve
y

ef
fo

rt
ac

ro
ss

co
un

tri
es

).
Sp

ec
ies

co
un

ts
un

iq
ue

by
co

un
try

on
ly.

Gr
ey

fil
l,

no
da

ta
.(

b)
Do

m
es

tic
at

ion
—

nu
m

be
ro

fd
om

es
tic

at
ed

liv
es

to
ck

br
ee

ds
by

co
un

try
,f

or
38

co
m

m
on

sp
ec

ies
(D

om
es

tic
An

im
al

Di
ve

rsi
ty

In
fo

rm
at

ion
Sy

ste
m

[3
9]

).
Hi

gh
es

tn
um

be
ro

fb
re

ed
s¼

70
9

(C
hi

na
),

m
ed

ian
¼

42
.G

rey
fil

l,
no

da
ta

.(
c)

Hu
nt

in
g—

to
ta

lg
lo

ba
la

nn
ua

lc
at

ch
of

m
ar

in
e

sp
ec

ies
(‘0

00
to

nn
es

),
fro

m
20

02
to

20
11

[4
0]

.I
ns

et
,n

um
be

ro
fs

pe
cie

s.
(d

)
No

ve
le

co
sy

ste
m

s—
ar

ea
s

cla
ss

ifi
ed

as
ur

ba
n

en
vir

on
m

en
ts

(m
ad

e
w

ith
w

w
w.

na
tu

ra
lea

rth
da

ta
.co

m
).

(O
nl

in
e

ve
rsi

on
in

co
lo

ur
.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160600

4

 on July 7, 2016http://rspb.royalsocietypublishing.org/Downloaded from 

http://www.naturalearthdata.com
http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160600

5

 on July 7, 2016http://rspb.royalsocietypublishing.org/Downloaded from 
and 25 systems experiencing other human disturbances

(e.g. pollution). They found that recorded rates of change in

harvested populations outpaced ‘naturally’ driven changes

by 300%. Similarly, Andersen & Brander [58] carry out an evol-

utionary impact assessment for commercial fisheries, finding

that expected rates of evolution attributable to fishing are

approximately 0.1–0.6% per year.

Jørgensen et al. [59] state that ‘evolutionary changes’ experi-

enced by commercially exploited fish species are taking place

on decadal timescales. This is supported by genetic evidence

for phenotypic change in commercially important species,

such as European plaice Pleuronectes platessa and Atlantic cod

Gadus morhua [60]. Thousands of marine species are currently

exploited (figure 2c), some small fraction of which could conse-

quently experience sufficient such changes that speciation

occurred. Similar so-called ‘unnatural selection’ has been

shown in poaching of elephants Loxodonta africana, trophy

hunting for bighorn sheep Ovis canadensis, red deer Cervus
elaphus culls and terrestrial snail collecting [61].

Despite the multiple known cases of hunting pressure driv-

ing rapid evolution, there are no documented cases of related

speciation events yet. Further, some propose that trait changes

in hunted species are mainly a result of demographic and

environmental factors [62].
(d) Novel ecosystem creation
Most ecosystems are sufficiently altered by human activity to

be considered ‘novel’ [63,64], and some are entirely new, e.g.

urban environments. Shifting ecosystems between states

causes significant biodiversity loss [36], but another effect of

creating novel ecosystems is to establish new biological

communities. For instance, species respond differently to the

conversion of land into urban environments: avoiding, adapt-

ing to or even exploiting it [63,65,66]. In turn, new traits can

emerge in novel ecosystems. Resident populations of the plank-

tivorous alewife Alosa pseudoharengus, for example, emerged

from anadromous ancestors in response to hydropower con-

struction, also altering evolution of prey species Daphnia
ambigua [14]. Certain species gain a competitive advantage in

novel ecosystems, leading to adaptation—such as fungal dis-

eases emerging faster in agricultural landscapes [67],

although it is not always clear whether these species are new.

Anthropogenic change can create new bioclimatic habitats,

leading to concurrent changes in species assemblages. For

instance, mountaintop plant diversity has been observed to

increase under climate change [68], and biodiversity can rise

in suburban habitats in comparison to neighbouring ‘natural’

areas [66]. Indeed, regional-scale plant species diversity world-

wide is currently increasing as species introductions ‘far

outnumber’ extinctions [69].

Novel ecosystems have already been observed to facilitate

speciation. The common house mosquito (Culex pipiens)

adapted to the environment of the underground railway

system in London, UK, establishing a subterranean population.

Now named the ‘London Underground mosquito’, Culex
pipiens molestus can no longer interbreed with its above-

ground counterpart [70]. Forest fragmentation in Mesoamerica

appears to have led to Neotropical damselfly Megaloprepus
caerulatus diverging into more than one species [71]. Both

examples demonstrate that anthropogenic restriction on gene

flow between sub-populations can result in speciation.
(e) Future mechanisms
Relocation, domestication, hunting and novel ecosystems are

well-established human processes. But emerging technol-

ogies could feasibly eventually become mechanisms for

driving speciation, if they are not short-lived. Here, we give

three examples.

Developments in genetics now enable direct manipulation

of genomes, and creation of genetically modified organisms

(GMOs). Even in a region like Europe, where the use of

GMOs in agriculture is relatively uncommon [72], there are

146 distinct variants of genetically engineered plant are

approved or awaiting approval for commercial cultivation

[73]. GMOs themselves are not new species, but may have the

capacity to generate self-sustaining populations or hybridize

with wild species [50,74]. The cultivation of GMOs could

eventually, therefore, lead to new self-sustaining lineages.

Technology may soon allow re-creation of extinct species

(de-extinction), despite deep practical and moral arguments

about doing so [75,76]. At least two approaches to de-

extinction (back-breeding, genetic engineering) would not

replicate the extinct genome exactly [76], but if successful

would result in the emergence of a species that otherwise

would not exist. Where to include de-extinction in net extinc-

tion rates is questionable if the species only became extinct

previously due to human activities.

Thirdly, albeit improbably, humanity could facilitate the

movement of organisms to extra-terrestrial bodies. Hundreds

of objects have been sent out into the solar system and beyond

[77]. Terrestrial bacteria, lichens and even some animals can

survive short-term space travel [78–80]. There is, consequently,

a non-zero probability of depositing organisms on extra-

terrestrial bodies—hence, strict rules concerning sterilization of

objects bound for Mars [81]. While the potential extra-terrestrial

transfer of organisms has only recently become reality, it will

feasibly become common over the timescales projected for

humanity to cause major extinction events [26].

( f ) Speciation in microorganisms
Global extinction estimates generally focus upon macroscopic

organisms [11]. Less is known about the endangerment of

microorganisms, and it is uncertain how many free-living

microbial lineages are threatened [82,83]. Although extinction

of macroscopic species presumably results in co-extinction of

parasites and mutualists, few have been documented [84].

Estimates for global prokaryote diversity range from 10 to

50 million species [85,86]. Parasites, including small eukar-

yotes, constitute 40% of biodiversity in some habitats [83]. So,

in principle, establishing global anthropogenic biodiversity

impacts requires a better understanding of impacts upon

microorganisms. All four mechanisms reviewed above (reloca-

tion, domestication, hunting, novel ecosystem creation) likely

influence diversification in microorganisms—e.g. water con-

taminated by effluent in novel urban environments presents

opportunities for rapid microbe diversification [87]. But the lit-

erature also suggests evidence for diversification occurring in

relation to medicine, disease, and the human ‘micro-biome’.

Species causing disease have co-evolved with humans,

often from non-human pathogens [88]. Numerous continually

adapting species are associated with our activities [89,90], and

hybridization between pathogens could result in diversification

[49,91]. Further, in fighting disease humans cause pathogens

to evolve resistance—hence increasing the ineffectiveness of

http://rspb.royalsocietypublishing.org/
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antibiotics, sometimes within only a year of deployment [55].

Emergence of antibiotic resistance within microbial lineages

could be considered one stage in the broader process of

speciation [17]. In a recent iteration of a major contemporary

database now containing 2107 human pathogens, approxi-

mately 40% were human specific, and 175 classified as

emerging diseases [92,93].

Other species have co-evolved benignly with humans, and

100 trillion microorganisms inhabit the average person [94],

making individual humans a ‘micro-biome’. As a species,

human micro-biome diversity is greater than for our closest

extant relatives (wild apes) [95]. Despite potential for hom-

ogenization through globalization, and loss of ancient human

micro-biome assemblages, geographical variation in micro-

biome genotypes is large [95,96]. So, the global expansion of

humans may itself have led to diversification in these micro-

organisms. Similar reasoning applies to domesticated species,

in which microbial speciation has indeed been observed [97].

In practice, estimating speciation and extinction rates

for microorganisms is problematic, and consequently, so is

incorporating them into net diversity calculations.
3. Evaluating net outcomes for global species
diversity

While human-mediated speciation rates are not quantified for

most taxa, they are potentially considerable. Hypothetically

then, if humanity drove speciation as fast as extinction with a

neutral net outcome for species diversity, would this be accep-

table? If species numbers alone reflected our preferences, then

species gains should temper concern about extinctions. Yet

intuitively, the answer would likely be ‘no’, extinctions

cannot acceptably be compensated for in this way. This
answer has theoretical support in the literature concerning pol-

icies seeking neutral net biodiversity outcomes—the ‘no net

loss’ principle [98]. We apply that theory to speciation

(figure 3), framing our discussion around challenges for ‘no

net loss’ [99].

(a) Species diversity as a metric
That species gains might not be considered fungible with losses

shines a spotlight on one weakness of ‘species’ as a fundamen-

tal unit for conservation. Although extinctions are a widely

used indicator of biodiversity trends, they inadequately capture

why biodiversity decline is important. Also relevant are

changes in abundance [9], range reductions, trophic downgrad-

ing [100] and loss of dynamics, e.g. migration [101]. Equally,

replacing lost species from very different phylogenies with a

comparable number diverging from extant relatives would

result in loss of evolutionary distinctness [102]. Full compen-

sation in species numbers alongside a loss of phylogenetic

diversity would never represent true ‘no net loss’ of biodiversity

per se. So, as species diversity alone is an insufficient unit for

capturing conservation importance, neither is ‘no net loss of

species diversity’ an adequate objective. Species is an especially

problematic metric for microorganisms [103,104].

Not to suggest that species-based metrics serve no purpose

for conservation, indeed, our reasoning applies to other

measures too—for instance, abundance. Losses in wild fauna

abundance during the Anthropocene [9] are not satisfactorily

mitigated by concurrent increases in abundance of relatively

homogeneous domesticated species (e.g. the 22 bn poultry or

1.5 bn cattle worldwide [39]). As changes in abundance

occurred in similar species with useful traits, the broader

loss, e.g. of phylogenetic diversity is again not reflected.

Achieving neutral net outcomes for biodiversity in relation to

any single metric cannot be considered acceptable [99].
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(b) Counterfactuals and timescales
Human activities can also suppress speciation—for instance, by

limiting species population sizes and ranges, thus reducing

establishment of geographical isolates [105,106]. Alongside

reducing isolates, large-scale losses of global species abun-

dance [9] would correspond to losses in trait diversity within

species, and losses of entire sub-species—reducing natural

speciation, perhaps far outweighing any anthropogenic contri-

bution towards increasing rates. Equally, regarding

mechanisms for increased speciation we have explored here,

relocation could, alongside loss of environmental hetero-

geneity, lead to a degree of interspecific hybridization that

reduces speciation rates [107]. That speciation could be both

increased and decreased by human activity demonstrates the

complexity of calculating human-driven speciation rates,

which is partly a problem of establishing a robust counterfac-

tual of ‘natural’ diversification. Developing counterfactuals is

a broader problem for ‘no net loss’ conservation [4,108].

Timescales are crucial in calculating net biodiversity

outcomes [99]. As discussed, a human-driven mass extinction

event could happen within 200 years [26]. Considering

mammal diversification rates [11] and known species [27],

one might simplistically expect a background global diversifica-

tion approximately (5488 � e0.07) – 5488¼ 398 new species of

mammal in the first million years. But it is non-trivial to estimate

diversification over a timescale as short as 200 years (and to iso-

late human-driven speciation rates) for reasons including the

difficulty in defining when a new species has actually emerged.

Extinction events might intuitively be expected to progress

more rapidly than speciation events. But recent research has

suggested that speciation might occur quickly and often—

just that new species rarely persist, making persistence over

time an important consideration [109]. In turn, this would

make it more problematic to evaluate whether short-lived

speciation events are artificial or whether they would have

occurred naturally anyway. Finally, any estimate of human-

driven speciation rates is limited by uncertainty concerning

technological and social change over the timescales needed

for even rapid evolution to occur.
(c) Spatial heterogeneity
Species extinctions exhibit substantial regional variation

(e.g. [28]). In turn, associated losses of ecosystem function

have likely varied in magnitude and timing, in different parts

of the world. Such spatial and temporal heterogeneity makes

it problematic to propose an ecologically defensible calculation

of net outcomes [99].

The challenge also extends to speciation. If the speciation

mechanisms discussed in this article significantly increased diver-

sification rates, then the rate would be influenced by, for example,

the number of invasive species or domesticated breeds in any

given region. There could be considerable heterogeneity in

the distribution of invasive species and livestock diversity

(figure 2), in turn, suggesting heterogeneous influences upon spe-

ciation rates under these assumptions. Similarly, the intensity of

novel ecosystem creation varies spatially (e.g. [40]) (figure 2d).

‘No net loss’ type calculations would thus likely be different in

different regions—perhaps with a net gain in some areas, and

net loss in others—even if no net loss were approximately

achieved overall. Such regional inequality in loss–gain trades is

likely to be deemed unacceptable by conservationists [110].
(d) Uneven trades
Even if all species were of objectively equal value, the human

mind fundamentally weights losses more highly than gains

[111,112]. So, a promised species gain would have to be per-

ceived as having greater value than an existing species lost, to

ensure a neutral net outcome was experienced. In addition,

there is uncertainty—known extant species are valued for utility

and existence, whereas unknown novel species cannot be.

Uncertainty has yet to be satisfactorily factored into net biodiver-

sity calculations [99]. Further, the prospect of ‘artificially’

gaining novel species through human activities is unlikely to

elicit the feeling that they would confer benefits to offset losses

of extant ‘natural’ species. Indeed, many people might find the

prospect of an artificially biodiverse world just as daunting as

an artificially impoverished one. If we presume the natural

to have intrinsically greater value than the artificial, then

assessment of net biodiversity outcomes is further complicated.

Finally, framing human-driven losses and gains of species

diversity as trades may be unethical, depending upon the

nature of the trades. Daw et al. [113] outline taboo trade-offs,

referring to trades in ecosystem services between ‘sacred’ and

‘secular’ values. In the context of this article, natural wild

species might have ‘sacred’ value—whereas economic gain,

livestock and other species which human civilization has ben-

efitted (e.g. Rattus norvegicus) might be seen as having more

‘secular’ or even negative value. If so, comparing the loss of

diverse wild species with gains in multiple closely related

artificial species would be morally incommensurable [113].
4. Conclusion and future directions
We have examined mechanisms by which human activities

could be driving rapid evolution, consequently, increasing

speciation rates. Regardless, there is an ongoing biodiversity

challenge to be met. But by considering net human influence

on biodiversity, conservation scientists will achieve a more

complete understanding of how we are changing the bio-

sphere. We recognize that a key limitation overall is the

blurred line as to when an actual speciation event has occurred

[17], and that the definition of ‘species’ remains vague.

Although we cannot currently quantify human-mediated

speciation rates, numerous studies have found human activities

to materially influence species’ evolution. Given the range of

species affected, this influence may be significant, and deserves

further investigation. Under each mechanism we have dis-

cussed here, existing datasets could support exploration for

many taxa (figure 2), which we suggest is an important

avenue for exploration. Microorganisms in particular deserve

more attention from conservation biologists. Further, emerging

technologies could eventually lead to human-mediated specia-

tion—but not in the near future, if ever. While less pressing

from that perspective, it is important to better understand the

timescales over which these technologies might develop.

Conceptual barriers prevent neutral net outcomes for

species diversity seeming acceptable—barriers that are techni-

cal, social and ethical. The range and strength of such barriers

requires further interdisciplinary exploration between biol-

ogists and social scientists, establishing what (if not absolute

species diversity) society truly wants to conserve about bio-

diversity, thereby improving conservation science and practice.

In conclusion, it is not currently possible to quantify exactly

how many speciation events have been caused through human
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activities, or how significant this process is. Yet it is clearly a

phenomenon worthy of further attention from conservation

science, given examples of human-influenced speciation events

do exist, as do multiple anthropogenic mechanisms for driving

rapid evolution. Consideration of speciation alongside extinction

may well prove important in developing a better understanding

of our impact upon global biodiversity. Merely considering

the issue leads to deeper questions: how we use species as a

fundamental metric, what species we value and why.
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32. Duarte CM, Marbá N, Holmer M. 2007 Rapid
domestication of marine species. Science 316,
382 – 383. (doi:10.1126/science.1138042)

33. Monastersky R. 2014 Life under threat. Nature
516, 160.
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