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ABSTRACT

According to recent empirical studies, reproductive senescence, the decline in reproductive success with increasing age,
seems to be nearly ubiquitous in the wild. However, a clear understanding of the evolutionary causes and consequences
of reproductive senescence is still lacking and requires new and integrative approaches. After identifying the sequential
and complex nature of female reproductive senescence, we show that the relative contributions of physiological decline
and alterations in the efficiency of parental care to reproductive senescence remain unknown and need to be assessed in
the light of current evolutionary theories of ageing. We demonstrate that, although reproductive senescence is generally
studied only from the female viewpoint, age-specific female reproductive success strongly depends on male–female
interactions. Thus, a reduction in male fertilization efficiency with increasing age has detrimental consequences for
female fitness. Lastly, we call for investigations of the role of environmental conditions on reproductive senescence,
which could provide salient insights into the underlying sex-specific mechanisms of reproductive success. We suggest
that embracing such directions should allow building new bridges between reproductive senescence and the study of
sperm competition, parental care, mate choice and environmental conditions.

Key words: age-specific trade-offs, ejaculate quality, environmental conditions, life-history evolution, maternal effects,
reproductive ageing, sperm competition, sexual selection, parental care.
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I. INTRODUCTION

Understanding how age impacts individual performance and
fitness is a long-standing question in evolutionary ecology
(Monaghan et al., 2008; Fletcher & Selman, 2015). Among
phenotypic traits that show senescence in the wild (e.g. Nussey

* Address for correspondence (Tel: +33(0) 472 448018; E-mail: jean-francois.lemaitre@univ-lyon1.fr)

et al., 2009; Jégo et al., 2014; Hammers et al., 2015), age-related
declines in survival and reproduction (coined actuarial and
reproductive senescence, respectively) are indisputably the
most studied (see Nussey et al., 2013, for a review), probably
because survival and reproduction correspond to direct com-
ponents of individual fitness (Bouwhuis et al., 2012; Kowald
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& Kirkwood, 2015). Thanks to the increasing availability
of longitudinal studies based on individuals of known age
monitored from birth to death (Clutton-Brock & Sheldon,
2010), there is now compelling evidence that actuarial and
reproductive senescence is the rule rather than the exception
in free-ranging populations of vertebrates (Nussey et al.,

2013).
Fifty years ago, William D. Hamilton proposed a robust

theoretical framework demonstrating that the decrease in
the force of natural selection inevitably leads to actuarial
senescence in any age-structured population (Hamilton,
1966). However, his model did not provide any explicit
prediction about reproductive senescence. More specifically,
while Hamilton (1966) predicted that actuarial senescence
must occur in any age-structured population and should
start at the age of first reproduction, he also stated that
the timing and magnitude of reproductive senescence is
much more difficult to predict. Although some case studies
have recently pointed out that reproductive senescence can
be uncoupled from actuarial senescence (e.g. Hayward
et al., 2015), reproductive senescence is usually grounded
in the same theoretical framework used to explain actuarial
senescence (Lemaı̂tre et al., 2015), which includes antagonistic
pleiotropy (Williams, 1957), the principle of allocation (Cody,
1966), and the disposable soma theory of ageing (Kirkwood,
1977). These theories share the common prediction that
greater allocation to growth or reproduction during early life
should be associated with a much steeper decline in fitness
(i.e. reproductive success, survival, or both) during late life.
However, while it is helpful to understand the diversity of
senescence patterns observed in the wild (Jones et al., 2014),
whether greater early allocation to growth or reproduction
predominantly impacts survival or reproductive performance
at late ages is currently unknown (but see Section V).

While actuarial senescence focuses on whether or not
an individual is alive or not at a given age, reproductive
senescence involves a full array of traits that covary in
complex ways. Indeed, age-specific reproductive success of
a given individual at each reproductive event depends on
a set of traits that influence the final reproductive output
sequentially (Clutton-Brock, 1991). Historically, reproduc-
tive senescence has been measured as the decrease in female
reproductive rate (using mx, the number of daughters alive
at birth that are produced by a female of age x) with
increasing age (Emlen, 1970), likely because mx is a standard
life table statistic traditionally recorded in population
biology (Skalski, Ryding & Millspaugh, 2005). However,
other metrics are also used to assess age-specific changes in
female reproductive performance. Some of these are direct
components of reproductive success such as birth rates (e.g.
McAdam et al., 2007), juvenile survival (e.g. Packer, Tatar
& Collins, 1998) or clutch/litter size (e.g. Balbontín et al.,

2012) while others indirectly influence reproductive success
through offspring survival, such as offspring mass (e.g. Sharp
& Clutton-Brock, 2010) or offspring birth or laying date (e.g.
Nussey et al., 2006). Thus, although reproductive success
is generally defined as the number of offspring alive at

the end of the period of maternal allocation (Lack, 1947),
reproductive senescence has often been studied using a wide
diversity of direct and indirect metrics. Strikingly, when
age-specific changes across different components of female
reproductive success are analysed simultaneously within a
given population, they display heterogeneous patterns of
senescence (e.g. Hayward et al., 2013; Berger et al., 2015b).
We highlight below how such discrepancies emphasize
the need for an integrative approach that accounts for the
sequential nature of reproductive senescence.

When reviewing the literature on reproductive senescence,
it appears that empirical evidence of reproductive senescence
in the wild mostly relies on studies focused on females (Nussey
et al., 2013). However, the limited information gained from
long-term studies of paternity data provides firm support
for reproductive senescence in free-ranging males (Table 1).
We emphasize here the importance of thorough approaches
of age-specific reproductive performance in males. We first
detail how the scarcity of age-dependent data on male
reproductive success prevents accurate identification of the
drivers of reproductive senescence. Then, we propose new
research directions that could allow identification of the
evolutionary implications of male reproductive senescence
in the wild, notably for females.

Overall, our work proposes several exciting and novel
research avenues that should clarify, and potentially change,
our current understanding of reproductive senescence in the
wild. Although an uncoupling between reproductive senes-
cence and actuarial senescence schedules can potentially
create the opportunity for a period of post-reproductive
lifespan (Cohen, 2004; Croft et al., 2015), this topic is beyond
the scope of the present review. Indeed, everything else
being equal, post-reproductive lifespan can simply result
from extended longevity rather than shortened reproductive
life or accelerated reproductive senescence (Alberts et al.,
2013; Croft et al., 2015). In addition, while reproductive
senescence is widespread in vertebrates (Nussey et al., 2013)
post-reproductive lifespan seems to be restricted to some
mammalian species (e.g. Nichols, Zecherle & Arbuckle, 2016,
but see Ellison & Ottinger, 2014, for a discussion in birds).
Finally, evidence of reproductive senescence reported so far
in free-ranging populations is mostly based on long-term
monitoring of mammals or birds (Nussey et al., 2013) and the
case studies we review here are thus logically focused on these
vertebrate classes. Nevertheless, reproductive senescence has
also been detected in reptiles (e.g. Massot et al., 2011; Warner
et al., 2016), fishes (e.g. Morbey, Brassil & Hendry, 2005), and
invertebrates (e.g. Zajitschek et al., 2009), and the research
questions we discuss are relevant to all animal species.

II. THE SEQUENTIAL NATURE OF
REPRODUCTIVE SENESCENCE

(1) From oocyte production to maternal care

In vertebrate females, the commonly reported decline in
the quantity of offspring produced with increasing age
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(e.g. senescence in birth rate or litter/clutch size) can have
multiple underlying causes. Among these, the progressive
erosion of the finite pool of primary oocytes set around
birth through atresia or ovulation is a key factor, at
least in mammals (Gosden & Telfer, 1987) and birds
(Holmes et al., 2003). Such erosion is responsible for the
low number of mature follicles in the ovaries at old
ages, which might potentially cause dysregulation of the
hypothalamic–pituitary–ovarian axis several years before
the complete cessation of reproduction (see O’Connor,
Holman & Wood, 1998, 2001, for reviews). This biological
process might thus be particularly relevant in terms of
reproductive senescence. In addition to a decreased quantity
of eggs with increasing age, progressive decline in the viability
of primary oocytes could account for the low reproductive
performance often observed in old females (Fedigan &
Pavelka, 2011), but evidence for such a ‘shelf life’ effect is
still debated (Shanley & Kirkwood, 2001). In other taxa such
as fishes the picture can be less straightforward since oocytes
can be produced continuously throughout life although it
is still possible that their quality shows signs of senescence
(Finch & Holmes, 2010). Interestingly, oocyte supplies and
patterns of decline can vary both among and within species
(e.g. mammals: Cloutier, Coxworth & Hawkes, 2015; birds:
Holmes et al., 2003), but whether such differences can account
for intraspecific variation in reproductive senescence in the
wild is currently unknown.

Overall, we lack information on the relationship between
the decline in both quantity and quality of oocytes and
reproductive senescence in the wild because measuring
oocyte reserves and characteristics (e.g. size, integrity) is
incompatible with individual longitudinal monitoring. Such
investigations require ovarian tissue to be collected, and
thereby ovariectomy or autopsy (Gosden & Telfer, 1987;
Vom Saal, Finch & Nelson, 1994). It is thus not surprising
that most current knowledge comes from experimental
studies performed in the laboratory or on captive animals,
principally rodents, primates and a few bird species
(mammals: Vom Saal et al., 1994; birds: Holmes et al., 2003).

Although the erosion of oocyte supplies constitutes
one proximal cause of reproductive senescence, decreased
efficiency of the reproductive machinery probably plays
a greater role (Wise, Krajnak & Kashon, 1996; Holmes
et al., 2003). Female reproductive physiology is extremely
complex (Ellison & Ottinger, 2014; Perry et al., 2015)
and the depreciation of many aspects of the reproductive
system might compromise reproductive success, such as
the pattern of hormone secretion or atrophy of the
oviduct (Vom Saal et al., 1994; Ottinger, Nisbet & Finch,
1995). The decrease of most reproductive functions can
generally be explained by general dysregulation of the
pituitary–hypothalamic–ovarian axis. Importantly, this
decline in efficiency of the pituitary–hypothalamic–ovarian
axis with increasing age seems to be a direct consequence
of somatic deterioration (Vom Saal et al., 1994), which
allows reproductive senescence to be understood within the
framework of evolutionary theories of ageing. According
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to the disposable soma theory of ageing, individuals that
allocate heavily to reproduction early in life cannot allocate
as much to somatic maintenance (Kirkwood & Rose, 1991),
which progressively leads to deterioration of physiological
functions (notably those involved in reproduction; Kirkwood
& Shanley, 2010) and ultimately promotes more rapid
reproductive senescence in late adulthood. Although the
study of functional reproductive senescence in the wild
remains challenging, there is a real need for ecological
studies of the interaction between somatic deterioration and
reproductive senescence. Adult body mass or size, recorded
in longitudinal studies of most taxa, might offer a reliable
indicator of physiological condition and reproductive success.
Recently, several studies have revealed that senescence in
body mass is widespread in the wild (e.g. Weladji et al.,

2010; Beirne, Delahay & Young, 2015), but whether such a
decline can be a reliable predictor of reproductive senescence
has not been tested. In addition, collections of biological
tissues such as blood samples are increasingly available from
long-term population monitoring and several biomarkers
such as molecular indicators of oxidative damage are now
used routinely to assess the level of somatic deterioration
(Selman et al., 2012). In the absence of a clear picture of
age-specific patterns in the reproductive machinery, whether
such biomarkers could reliably indicate the global state of
the reproductive system needs to be determined. If so, it
would open the door to integrative studies linking somatic
maintenance and reproductive senescence.

Both oocyte depletion and physiological deterioration of
the reproductive system jeopardize female reproductive
success at old ages. However, even if female fertility
remained constant over the entire lifespan, progressive
diminution of maternal care could compromise reproductive
output through a decline in offspring birth mass or early
growth, and thereby survival, with increasing maternal
age. Such senescence in offspring phenotypic quality
has now been widely reported in terms of egg or
offspring mass (e.g. Sydeman & Sydeman & Emslie, 1992;
Sharp & Clutton-Brock, 2010), or offspring survival (e.g.
Clutton-Brock, Albon & Guinness, 1987; Ericsson et al.,

2001; Descamps et al., 2008). When documented, declines in
offspring phenotypic quality are generally interpreted as the
consequences of senescence in maternal care (e.g. Ericsson
et al., 2001). Detailed field studies on senescence in maternal
effects remain scarce although new theoretical developments
suggest that this should be stronger than senescence in
fertility rate (Moorad & Nussey, 2016). In addition, old
females are limited in their abilities to acquire and store
body reserves (Skogland, 1988; Lecomte et al., 2010), which
can be deleterious in terms of the amount of resources
transferred to offspring. In birds and mammals, females
provide care during nestling and weaning, two critical
periods more costly than incubation or gestation (Drent &
Daan, 1980; Gittleman & Thompson, 1988; Clutton-Brock,
Albon & Guinness, 1989) and that strongly dictate offspring
growth. In mammals, the quantity of nutrients provided to
offspring through lactation is positively correlated with early

growth (Hinde, Power & Oftedal, 2009) and fast-growing
individuals rapidly reach a body mass threshold beyond
which survival during the juvenile stage is no longer
condition-dependent (Dmitriew, 2011). To the best of our
knowledge, no empirical study has yet investigated whether
milk quantity provided by females decreases with increasing
age in wild populations. However, studies in agronomy
report that the milk yield provided by cows generally peaks
around 6–9 years of age (Brody, 1927; Lush & Shrode,
1950) or at the fourth to fifth lactation event (Mellado
et al., 2011) and decreases afterwards, independently of any
change in body mass (Brody, 1927). In addition to quantity,
milk composition is likely to affect the fate of offspring.
Milk mostly contains water, lipids, proteins, sugars and
minerals such as calcium (Oftedal, 1984), and its composition
influences both offspring mass and growth in wild mammals
(Mellish, Iverson & Bowen, 1999). Milk composition also
affects offspring survival. In Columbian ground squirrel,
Urocitellus columbianus, a low protein content early in lactation
but high from the lactation peak to late lactation is a reliable
predictor of overwinter survival of offspring, independent of
their body mass (Skibiel & Hood, 2015). In birds, maternal
senescence can also affect both prenatal (e.g. egg quality) and
post-natal (e.g. rearing capacities) components (Bogdanova,
Nager & Monaghan, 2007; Beamonte-Barrientos et al., 2010).
The different case studies discussed in this section highlight
the sequential nature of female reproduction. From oocyte
production to maternal care, reproductive success is shaped
by a sequence of traits that can dramatically compromise it,
either in an additive or interactive way (Fig. 1).

(2) Assessing the relative fitness cost of early versus
late reproductive failure

To illustrate the importance of considering the sequential
nature of the female reproductive cycle, we performed
simulations of the fitness impact of reproductive failure
at different stages of the reproductive sequence in both
short-lived and long-lived life histories, in the presence of
reproductive costs (Fig. 2). To quantify the fitness cost of
a reproductive failure occurring early (e.g. probability to
ovulate) and late (e.g. offspring death at the end of the
maternal care period) in the reproductive sequence, we
built a pre-breeding census age-specific female-dominant
demographic model (Caswell, 2001) including the cost of
raising offspring on the subsequent reproduction. We used
an empirical measure of female reproductive costs in terms
of fecundity from red deer (Cervus elaphus) and Alpine marmot
(Marmota marmota) (a decrease of about 20%; Clutton-Brock,
Guinness & Albon, 1983; Hackländer & Arnold, 1999).
Thus, females of a given age having given birth to an
offspring that died suffer a 20% decrease in their probability
of giving birth the next year, as do females that successfully
raised an offspring. We assessed fitness costs of this penalty
to reproductive failure by offspring loss in two markedly
different life histories: short-lived versus long-lived species.
For the sake of simplicity, we assumed that no reproductive
cost in terms of survival occurred in either the short-lived
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Fig. 1. Overview of sex-specific contributions to age-specific reproductive success. In both males and females reproductive success
results from a complex series of events (e.g. gamete production, fertilization, gestation) involving both sexes. The probability that
each of these events is a success depends on multiple phenotypic traits that potentially can all show signs of senescence.

or the long-lived life histories. Similarly, a potential trade-off
between offspring number and offspring survival was not
included in our simulation.

Females of the short-lived species started to give birth at
1 year of age. They all survived up to 3 years of age (annual
survival rate of 1) and died just before reaching 4 years of age,
meaning that the survival rate between 3 and 4 years of age
was 0. We included reproductive senescence from 1 to 3 years
of age: 0.8, 0.6, and 0.4 female offspring recruited by 1-, 2-,
and 3-year-old females, respectively. From this life cycle, the
mean female fitness estimated by the asymptotic Malthusian
parameter (r; Fisher, 1930) was 0.351 and the generation time
was 1.58 years (approximating that of a great tit, Parus major).
Females of the long-lived species started giving birth at 2 years
of age. They survived up to 9 years of age (annual survival
rate of 1) and died just before reaching 10 years of age,
meaning that the survival rate between 9 and 10 years of age
was 0. We included reproductive senescence from 2 to 9 years
of age: 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.025 and 0.0125 female
offspring recruited by 2-, 3-, 4-, 5-, 6-, 7-, 8-, and 9-year-old
females, respectively. From this life cycle, the mean female
fitness estimated by r was 0.135 and the generation time was
3.27 years (approximating that of a badger, Meles meles). We
then included in both short- and long-lived life cycles the costs
of the late incubation/gestation–early nestling/lactation

period, which are the most costly reproductive stages in
birds and mammals (Drent & Daan, 1980; Clutton-Brock
et al., 1989), in two different ways. First, we assumed that
all reproductive failures occurred at ovulation or early
pregnancy. Only females that were successful at raising their
offspring were thus subjected to reproductive costs in scenario
1. In scenario 2, we assumed that all reproductive failures
occurred through offspring mortality after the lactation peak,
so that females that failed at a given age also suffered from a
reproductive cost in terms of reduced fecundity.

The fitness cost of reproduction under scenario 1 (i.e. no
reproductive cost for females that failed the year before)
was slightly above 10% in both short-lived and long-lived
life histories (Table 2). By contrast, females that lost their
offspring late in the reproductive process suffered from much
heavier fitness costs, especially in long-lived females with
a higher level of iteroparity. These simulations reveal that
when the probability of failing at one of these steps increases
with age, consequences in terms of reproductive senescence
would be immediate. In addition, the magnitude of the
fitness costs of failing depends both on the trait targeted by
senescence and on the timing of the failure (Fig. 2; Table 2).

These simple demographic simulations clearly demon-
strate the potential for strongly negative impacts of losing
offspring late in the reproductive sequence (i.e. after the peak

Mating Incubation / 
Pregnancy 

S S 

F 

Laying / 
Parturition  

Fledging / 
Weaning 

Recruitment 
(fledging or weaning 
success) 

S S 

F F F 

No recruitment No recruitment No recruitment No recruitment 

Fig. 2. Sequential nature of reproductive success in females. Reproductive success includes different stages (e.g. mating, pregnancy,
birth and weaning in mammals). At each stage, a female can either succeed (S) or fail (F). The only way to recruit one offspring at
the end of the reproductive cycle is to succeed at every stage. For simplicity we use a monotocous species as an example.
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Table 2. Fitness costs (measured in terms of average individual
fitness, r) of reproductive failure at different stages of the
reproductive sequence. Scenario 1 corresponds to early
reproductive failure (before birth), while scenario 2 corresponds
to late reproductive failure (after lactation peak). These two
scenarios include a reproductive cost in terms of reproduction
in the subsequent year of 20%. Total fitness cost was measured
as the proportional decrease in r and calculated between the
scenario considered (1 or 2) and the situation with an identical
rate of reproductive failure but no reproductive costs. Relative
fitness costs were measured as the proportional decrease in r
between scenario 1 and 2. Simulation results are displayed for
typical short-lived and long-lived mammals (longevity of 3 and
9 years, respectively)

Scenario
Average
fitness (r)

Total
fitness

cost (%)

Relative
fitness

costs (%)

Short-lived scenario 1 0.308 12.29
Short-lived scenario 2 0.291 17.13 5.52
Long-lived scenario 1 0.120 11.36
Long-lived scenario 2 0.094 30.47 21.57

energetic demand of lactation in mammals) when reproduc-
tive costs in terms of future reproduction occur. We should
thus expect senescence to be counter-selected at a much
higher intensity in late than in early reproductive stages
when reproductive costs in terms of future reproduction are
high. Under such conditions, we predict greater senescence
in pregnancy rates than in offspring pre-weaning survival.
Although we used mammals as a theoretical example in our
simulation, our prediction can be tested in any species where
females provide maternal care to their offspring. We expect
this effect to be more pronounced in long-lived capital breed-
ers that pay even higher fitness costs of senescence in offspring
pre-weaning survival (Table 2). Further work could test this
prediction using both theoretical and empirical approaches.

Results from our simulations reinforce the expectation
of a terminal allocation (Weladji et al., 2010) or investment
(Clutton-Brock, 1984). Old reproducing females should try
harder to raise their offspring successfully than young females
not only because they have less chance of surviving to
the next year, but also because, even if they survive, they
have a lower probability of producing any offspring the
next year. Unravelling the relative influences of senescence,
reproductive costs, allocation to reproduction and experience
constitutes an important research avenue to understand
factors shaping age-dependence in maternal care.

III. REPRODUCTIVE SENESCENCE IS THE
OUTCOME OF MALE–FEMALE INTERACTIONS

(1) Embracing the complexity of male reproductive
senescence

It is impossible to understand variation in the probability
of eggs being fertilized without simultaneously considering

both male and female reproductive expenditures. Therefore,
the study of reproductive failure (and by extension, of
age-dependence in reproductive failure) needs to integrate
both male and female contributions (Fig. 1). As emphasized
above, almost all investigations of reproductive senescence
in the wild have been approached from the female
viewpoint, although increasingly available paternity analyses
in vertebrates have revealed clear evidence of male
reproductive senescence (see Table 1). Irrespective of
the mating system, the reproductive success of males
is constrained by their ability to secure one or several
mating opportunities and thus by their success during
the pre-copulatory competition period (Darwin, 1871;
Andersson, 1994). This intense competition for matings,
especially in highly polygynous species, is responsible for
the evolution of costly conspicuous traits and behaviours
that confer competitive advantages to males allocating
substantially to these traits (Clutton-Brock, 2007). Therefore,
a thorough understanding of male reproductive senescence
in the wild requires determination of whether male efficiency
in pre-copulatory competition decreases with increasing age.

The amount of energy that males allocate to sexual
competition varies depending on the mating system. In
polygynous species, males often maximize their mating
success by defending reproductive territories or harems
(Clutton-Brock, 1989). Interestingly, in such species (e.g.
large herbivores), males are less successful at controlling
large territories (Vanpé et al., 2009) or large harems (Nussey
et al., 2009) at old ages. Although current evolutionary
theories of ageing do not provide clear predictions in
terms of reproductive performance at old ages, declines
in male pre-copulatory performance are generally studied
from the viewpoint of an early- versus a late-life trade-off in
reproductive performance (Lemaı̂tre et al., 2015). Thus, red
deer males allocating extensively to sexual competition by
rutting during long periods and by controlling large harems
show a decline in harem size after ten years of age (Lemaı̂tre
et al., 2014), but the exact consequences of this decline in
terms of reproductive success remain to be investigated. In
many taxa, males have secondary sexual traits acting either
as weapons during fights with rivals or as ornaments to attract
females. Such traits often influence male reproductive success
positively in a wide range of taxa, from insects (e.g. Hongo,
2007) to mammals (e.g. Coltman et al., 2002). A decline in
weapon size could thus compromise breeding opportunities
(Preston et al., 2003). A few studies in laboratory (e.g. Hoikkala
et al., 2008; Velde et al., 2012) and free-ranging conditions
(reviewed in Table 1) have investigated age-specific declines
in male armaments or ornaments (e.g. Kervinen et al.,

2015; Lopez-Idiaquez et al., 2016). Interestingly, among
secondary sexual traits that are positively correlated with
male reproductive success in the wild, senescence occurs
in foot colour intensity in the blue-footed booby (Sula

nebouxii) (Torres & Velando, 2007) and in song consistency
in the great tit (Rivera-Gutierrez, Pinxten & Eens, 2012).
Conversely, antler size in male red deer and tail length in
male barn swallows (Hirundo rustica) do not decrease at old ages
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(see Nussey et al., 2009; Balbontín et al., 2011, respectively).
Absence of senescence in secondary sexual traits was also
reported in houbara bustards (Chlamydotis undulata) in which
the level of sexual displays increased from 1 (corresponding
to the age at sexual maturity of male in this bird species)
to 8 years of age and then remained constant until death
(Preston et al., 2011). Understanding why some secondary
sexual traits show signs of senescence while others do not
requires an integrated approach to the ‘ageing phenotype’
that would include measures of physiological performance,
health and ultimately survival [e.g. Giraudeau et al. (2016)
for a telomere shortening cost of colouration maintenance in
painted dragon, Ctenophorus pictus]. Such an approach would
also require consideration of the environmental conditions
that influence life-history strategies through changes in the
quantity and quality of resources available (see Section V).
Within a species, the study of senescence in secondary sexual
traits can become even more complex for species displaying
conspicuous ornaments. Some can show senescence while
others do not (Table 1), as recently observed in a free-ranging
population of Soay sheep (Ovis aries) (Hayward et al., 2015).
Such heterogeneity in senescence patterns might provide
new insights into the relative importance of each sexual trait
for populations in which traits in sexual competition show
the slowest decline with increasing age, perhaps in response
to preferential allocation to such traits at late ages (Møller
& Pomiankowski, 1993; Bonduriansky et al., 2008; Galván &
Møller, 2009).

In most animal species, a decrease in male reproductive
success with increasing age is likely to be accompanied by
a reduction in male fertilization efficiency in late adulthood
(Johnson & Gemmell, 2012). The reproductive cycle of males
is sequential and includes two main stages, corresponding to
the pre-copulatory (from the start of male–male competition
to copulation) and post-copulatory (from copulation to
egg fertilization) periods. These two periods are associated
with two distinct types of competition, involving different
organs or structures (secondary versus primary sexual traits).
Therefore, even if a male maintains his ability to gain access
to mating opportunities over the course of his life, any
senescence in his abilities to fertilize eggs will compromise
his reproductive success (Fig. 1). Interestingly, the decline
in male ability to fertilize eggs might itself be multi-factorial
because several traits defining ejaculate quality (such as sperm
number per ejaculate, velocity and integrity of spermatozoa)
can be increasingly impaired with age and thereby limit
reproductive success at old ages (Pizzari et al., 2007). Until
now, this has been studied in humans (e.g. Rochebrochard
& Thonneau, 2003) to investigate proximate causes of
infertility. In men, ejaculate quality declines with increasing
age as revealed by a meta-analysis performed on 90 clinical
studies (Johnson et al., 2015). Evidence of senescence in
sperm quantity in other species in the wild has been
reported in the American horseshoe crab, Limulus polyphemus

(Sasson, Johnson & Brockmann, 2012), but most studies
of age-specific variation in sperm-related traits focused
on birds (Table 1). In the barn swallow, traits linked to

sperm swimming efficiency decrease linearly with increasing
age (Møller et al., 2009), while in the blue-footed booby,
sperm includes more DNA damage in males older than
10 years than in middle-aged males (Velando et al., 2011).
In mammals, a loss in sperm quantity and/or quality at
old ages has been reported from captive populations [e.g.
black-footed ferret, Mustela nigripes (Wolf et al., 2000); cheetah,
Acinonyx jubatus (Durrant et al., 2001); Asian elephant, Elephas

maximus (Thongtip et al., 2008)], where fertility is often studied
for conservation purposes. Only one study investigated
this question in the wild, failing to find evidence of a
decline in sperm-related traits at old ages (Curren, Wedele
& Holekamp, 2013, on spotted hyenas, Crocuta crocuta).
However, their study was performed on cross-sectional data,
with confounding effects of selective disappearance, possibly
causing an underestimation of the intensity of senescence
(Nussey et al., 2008).

The examples compiled above clearly show that the study
of senescence in traits defining male fertilization in the wild is
still in its infancy, and we stress the importance of collecting
sperm samples repeatedly throughout an individual’s life.
Such protocols are evidently not straightforward because
they require repeated sperm sampling from males captured
during each breeding season. In mammalian species,
electro-ejaculation after anaesthesia is often needed (e.g.
Crosier et al., 2007; Curren et al., 2013; Fasel et al., 2015)
but other non-invasive techniques can be employed in
some primates (e.g. recovery of semen sample after natural
masturbating behaviour in Yakushim Macaques, Macaca

fuscata yakui; Thomsen, 2014). Repeated semen collections are
easier to obtain in passerine birds through relatively simple
handling methods (Møller et al., 2009). Alternatively, testes
mass, a good indicator of sperm production rate is more easily
measured in wild vertebrates than ejaculate quality (Ramm
& Stockley, 2010), providing a reasonable measure of siring
success (Preston et al., 2003; Schulte-Hostedde & Millar,
2004). A recent study performed in Soay sheep revealed
that testes circumference decreases from age five onwards
(Hayward et al., 2015). However, the relative importance
of this decline on male senescence in breeding success
reported in this population (Hayward et al., 2015) is not
known. Conversely, in birds, several studies suggest that
testes mass (or volume) increases with age, which at first
sight contradicts the presence of senescence in male gonad
size. However, these studies are often based on two age-class
comparisons typically between 1 year-old and older males
(e.g. Merilä & Sheldon, 1999; Graves, 2004), precluding any
reliable interpretation in terms of senescence.

In addition to providing important insights on the
proximate causes of male reproductive success in the wild,
longitudinal studies of senescence in ejaculate quality might
stimulate the development of a theoretical framework for
explaining the evolution of male reproductive senescence. To
date, theoretical studies of senescence have mostly focused
on actuarial senescence (Hamilton, 1966; Davison, Boggs &
Baudisch, 2014) and more recently on female reproductive
senescence (Cichoń, 2001; van den Heuvel, English & Uller,
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2016; Moorad & Nussey, 2016). The rare studies that
have documented senescence in post-copulatory traits have
generally interpreted their results in the context of early-
versus late-life trade-offs (Lemaı̂tre et al., 2015). In houbara
bustards, males displaying long sexual courtships during
early life suffer from stronger senescence in ejaculate quality
(Preston et al., 2011), as expected under predictions shared
by antagonistic pleiotropy (Williams, 1957) and disposable
soma theories of ageing (Kirkwood & Rose, 1991). Finally,
we emphasize that new models should incorporate both
pre- and post-copulatory components of male reproductive
allocation in order to predict whether age-specific allocation
to pre- and post-copulatory competition is equally important
in shaping senescence in male reproductive success. Such
models should also consider the possibility of age-specific
trade-offs between these two types of allocation (see Section
IV).

(2) Consequences of male reproductive senescence
on female fitness

Detailed investigations of male reproductive senescence
are necessary for disentangling the relative contributions
of male and female age on reproductive senescence. In
domestic fowl (Gallus gallus domesticus), female reproductive
success is negatively influenced by mating with old males
that have impaired ejaculate quality (e.g. low number of
sperm per ejaculation, low sperm velocity; Dean et al., 2010).
Offspring growth can also decrease with increasing paternal
age, as in houbara bustards in which old males produce
lighter offspring one month after hatching than young males
(Preston et al., 2015). Such effects can lead to decreased
female reproductive success because in most free-ranging
populations of vertebrates, the lightest juveniles are those
most likely to die [e.g. Maness & Anderson (2013); see
Ronget et al. (2017) for recent reviews in birds and mammals].
Therefore, when old females mate with old males, the
senescence sometimes observed in offspring survival (e.g.
mammals: Descamps et al., 2008; birds: Torres, Drummond
& Velando, 2011) might result from an age-related decline
in female reproductive performance but might also be due
to poor-quality DNA of an old male germ line. There is
now a need to investigate whether detrimental effects of old
paternal age are common in the wild and to quantify precisely
their contribution to reproductive senescence. Interestingly,
if the deleterious effects of advanced male age on female
fitness are widespread, we can predict that some specific
adaptations in female reproductive behaviour and physiology
might have evolved to counteract the deleterious effects
of impaired sperm from old males. In guppies (Poecilia
reticulata), in vitro fertilization assays have revealed that
the ovarian fluid buffers the temporal decline in sperm
quality that begins once sperm are released into the water
(Gasparini & Evans, 2013). Whether such female adaptations
have evolved to counteract the effect of mating with old
males remains unknown, but this finding emphasizes the
importance of considering male–female interactions when
studying reproductive senescence.

The influence of paternal age on female reproductive
senescence might be particularly important in species
displaying assortative mating by age (i.e. when old females
are paired with old males). For instance, any decrease in
competitive abilities of old females could lead females to
be less selective in mate choice and thereby to increase
their probability of mating with old males, which increases
the risk of sperm limitation or the risk of facing a lack of
resources for offspring during the parental care period. Until
now, age-assortative mating has mainly been documented
in monogamous birds and seems to be rare in insects or
mammals (Jiang, Bolnick & Kirkpatrick, 2013). In these
latter classes, female preference for prime-age males, which
has been documented in some species (Johnson & Gemmell,
2012), might have evolved in response to the poor quality
of old male ejaculates (Beck & Promislow, 2007; Johnson
& Gemmell, 2012). In addition, if females mating with
old males are more likely to suffer from sperm limitation
(i.e. when female fecundity is limited by the number of
spermatozoa inseminated by one or more males), they might
be more likely to initiate subsequent mating with potentially
younger males (Radwan, 2003; Dean, Bonsall & Pizzari,
2007). Although a few studies in birds suggest that extra-pair
copulations do not support such skewed age-distribution
toward young males [e.g. reed bunting, Emberiza schoeniculus
(Bouwman & Komdeur, 2005); bluethroat, Luscinia svecica
(Laskemonen et al., 2008)], how females adjust their remating
rate according to the age of their partner remains poorly
investigated. Such research is necessary for understanding
how age-specific mate choice might have evolved according
to the fertility costs described above or the potential genetic
benefits of mating with old males (Manning, 1985; Brooks &
Kemp, 2001).

Finally, male and female allocation to offspring can also
interact after offspring birth and shape sex-specific patterns
of reproductive senescence. Although paternal care is much
less widespread than maternal care across animals (Kokko &
Jennions, 2012), we cannot exclude that in species sharing
parental care equally between sexes, such as many birds
(Møller, 1988) or some mammals [e.g. savannah baboons,
Papio cynocephalus (Buchan et al., 2003)], a decline in the
amount of paternal care with increasing age will impact
female reproductive senescence (and vice versa) through an
effect on offspring survival (Fay et al., 2016; see also Fig. 1).
Evidence that increasing age of fathers has strong deleterious
effects on offspring health is accumulating (Zhu et al., 2008),
and epigenetic effects on male germ cells are often invoked
as the underpinning biological cause. However, whether or
not changes in paternal care with age are widespread in the
wild remains to be assessed.

IV. THE ROLE OF TRADE-OFFS IN SHAPING
REPRODUCTIVE SENESCENCE

As we emphasized above and in Fig. 1, reproduction is, in
both sexes, a sequential process involving many physiological

Biological Reviews 92 (2017) 2182–2199 © 2017 Cambridge Philosophical Society



2192 Jean-François Lemaı̂tre and Jean-Michel Gaillard

and behavioural processes starting from gamete production
and ending with the care provided to offspring. Here,
we argue that future studies of reproductive senescence
in the wild should not only consider the full set of traits
influencing age-specific reproductive output but should also
take into account the likely covariation in these traits. Below,
we provide two examples of trade-offs in reproductive
allocation, one in females (offspring size–number trade-off)
and one in males (pre- and post-copulatory trade-off)
and discuss their possible implications for the study of
reproductive senescence.

(1) Offspring size–number trade-off

When females produce a single offspring per reproductive
attempt, maximization of reproductive success can be
reached by maximizing the probability of producing a viable
offspring at each stage. However, in a large number of species,
females produce several offspring per reproductive attempt.
In this case, the simple maximization of reproductive success
at each stage is prevented by an offspring size–number
trade-off (Smith & Fretwell, 1974). Extra energy can be
allocated either to one additional offspring without changing
clutch or litter mass; to a higher average mass of the clutch
or litter without changing the clutch or litter size; or to
some compromise between these. This trade-off has led
evolutionary ecologists to investigate the clutch or litter size
that would maximise reproductive success, called optimal
litter size (Lack, 1947) or Lack’s clutch size (Godfray,
Partridge & Harvey, 1991). Under the concept of individual
optimization (Morris, 1985; Pettifor, Perrins & McCleery,
1988), the optimal clutch or litter size can [when each
individual has its own optimal clutch or litter size (Murphy,
2000; Risch, Michener & Dobson, 2007)] or cannot [when
all individuals have the same optimal clutch or litter size
(Gaillard et al., 2014)] vary among individuals within a
population. In stark contrast to optimal clutch or litter size
at the individual or population level that has received great
attention, whether or not the optimal clutch or litter size
should vary with age has been almost overlooked. Assuming
that senescence will be associated with decreasing resource
acquisition (e.g. through decreased food intake in relation
to tooth wear in mammals or through impaired ability to
convert food to energy), we should expect clutch/litter size
or mass or both to decrease with increasing age (Begon &
Parker, 1986). However, a given resource acquisition can
lead to different optimal clutch or litter size depending on
individual age, which leads to complex and barely predictable
senescence patterns in clutch or litter mass and offspring size
(Kindsvater et al., 2010). In support of this prediction, the few
empirical studies that have addressed age-specific variation in
both clutch or litter size and offspring size displayed a large
diversity of patterns (e.g. Ericsson et al., 2001; Descamps
et al., 2008; Sharp & Clutton-Brock, 2010). To the best of
our knowledge, only two studies have assessed the influence
of maternal age on the offspring size–number trade-off,
providing the same general outcome of no age-specific
change in this trade-off. However, opposite senescence

patterns in offspring size and offspring number between
the two focal species were hidden behind the pattern of
a constant trade-off with age. In Soay sheep, old females
trade offspring mass for litter size so that litter size remains
constant with age but offspring mass declines with increasing
age from 7 years onwards (Hayward et al., 2013). By contrast,
female Alpine marmots produce decreasing litter mass from
10 years of age onwards and trade litter size for offspring
mass, causing litter size to decrease with increasing age
while offspring mass does not change (Berger et al., 2015b).
Such contrasting offspring size–number trade-offs between
Soay sheep and marmots likely evolved in response to
marked differences in lifestyle and environmental conditions
between these species. Environmental unpredictability might
play a key role. In the highly stochastic environment of
the Island of St Kilda (Northern Scotland), old female
sheep maximise reproductive success through the number
of offspring produced, whereas in the highly predictable
environment offered by burrows in the French Alps, old
female marmots maximise reproductive success through
the quality of their offspring. To understand whether this
represents a general pattern will require further theoretical
and empirical studies.

(2) Pre- and post-copulatory trade-off

In many animal species, males have to face competition for
mating (i.e. pre-copulatory competition) and for fertilizing
eggs (i.e. post-copulatory competition) (Birkhead & Møller,
1998). As emphasized above, phenotypic adaptations for
these two types of competition can show senescence (Table 1),
implying that the success of males in both types is likely
to decline with increasing age. However, an important
consideration when studying male allocation to pre- and
post-copulatory sexual traits is that males face a resource
allocation trade-off between these two types of traits (Parker,
Lessells & Simmons, 2012; Ferrandiz-Rovira et al., 2014;
Dines et al., 2015) because both primary and secondary sexual
traits are costly to produce and maintain (Dewsbury, 1982;
Andersson, 1994; Thomsen et al., 2006). Theoretical models
have predicted that the quantity of expenditure in ejaculates
should vary according to the mating role of the male (e.g.
whether males mate in a favoured or non-favoured role;
Parker, 1990) or their competitive environment (e.g. number
of competitors per mating; Parker et al., 2012), and empirical
studies suggest that these trade-offs are widespread in a large
range of species (e.g. Klaus et al., 2011; Pumianmoorhty,
Blanckenhorn & Schäffer, 2012; Dunn et al., 2015). For
example, in Austropotamobius italicus, a freshwater crayfish,
there is a strong negative association between the size of
the chelae (claws involved in antagonistic contests between
males) and the size of the ejaculate (Galeotti et al., 2012).

Although studies of covariation between pre- and
post-copulatory traits are increasing, the effect of age on
the intensity and shape of this trade-off has been neglected
from both theoretical and empirical viewpoints. Generally,
models that have been developed to investigate this question
are based on the assumption that males have a total energy
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budget for reproduction that they can share between pre-
and post-copulatory competition. However, the quality and
thus the efficiency of both primary and secondary sexual
traits can decrease with increasing age (Table 1), possibly
at different rates, and the marginal benefits of allocating
preferentially to pre- or post-copulatory traits according to
a given environmental condition (e.g. density of competitors
in the population) might thus be age-dependent. To date,
age-specific changes in the trade-off between pre- and
post-copulatory traits have been investigated only in the
domestic fowl, in a study that failed to detect age-specific
covariation between comb size (pre-copulatory trait) and
sperm quality (Cornwallis, Dean & Pizzari, 2014). In females,
while a trade-off between comb size and gamete quality
was absent in early life, negative covariation was detected
at late ages, suggesting that decreasing somatic condition
with increasing age might create the conditions for the
evolution of trade-offs between sexual traits (Cornwallis et al.,
2014). Overall, there is a need for research incorporating the
complex relationships linking traits responding to different
selection pressures (such as pre- or post-copulatory sexual
selection), somatic condition and age, notably in the wild
where resources are limited and the trade-offs expected to
be more acute. Such an approach would provide important
insights into different reproductive and life-history strategies
that have evolved to maximize fitness over the lifespan in the
context of reproductive senescence.

V. THE INFLUENCE OF ENVIRONMENTAL
CONDITIONS ON MALE AND FEMALE
REPRODUCTIVE SENESCENCE

Variation in environmental conditions is now recognized
as a key factor influencing patterns of actuarial senescence
(Austad, 1993; Lemaı̂tre et al., 2013; Holand et al., 2016).
However, the effects of environmental variation on
reproductive senescence have been little studied even
though their fitness consequences need to be quantified
to assess accurately the demographic consequences of harsh
environmental conditions, especially in the current context of
climate change. Some studies have recently targeted the effect
of environmental conditions on reproductive senescence. All
these studies focused on the role of environmental conditions
during early life [see Nussey et al. (2007) for a case study
in mammals, and Bouwhuis et al. (2010); Cartwright et al.
(2014) and Balbontín & Møller (2015) for case studies in
birds], probably because under current theories of life-history
evolution, early life stages are the most critical periods when
available resources must be partitioned between growth, first
reproductive events, and somatic maintenance (Lemaı̂tre
et al., 2015). In red deer, females born at high population
density show accelerated reproductive senescence (Nussey
et al., 2007) and immigrant female great tits have higher
rates of reproductive senescence than resident females,
likely because these individuals initially suffered from a
poor-quality natal environment (Bouwhuis et al., 2010). If
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Fig. 3. Birth rates for wild (black) and semi-captive (grey)
populations of ring-tailed lemurs (Lemur catta). Females from the
wild population were studied in Berenty Reserve, southern
Madagascar (Ichino et al., 2015) and individuals from the
semi-captive population were monitored on St. Catherine
Island, Georgia, USA (Parga & Lessnau, 2005). Sample sizes for
each age-class are provided in parentheses. When comparing
birth rates between semi-captive and wild populations, no
statistical difference occurs for prime-age (between 4 and
11 years old, z score test: z = 0.53, P = 0.59) but a statistically
significant difference occurs for individuals older than 11 years
old (z score test: z = 3.08, P =<0.001).

these studies indeed reveal that environmental conditions
influence reproductive senescence, it is now pertinent to
investigate the complexity of this relationship. Below, we list
four important avenues that should help with this aim.

First, to evaluate the role of environmental conditions
on life-history traits, captive (i.e. resources are generally
provided ad libitum) and wild (i.e. resource availability is
environmentally determined) populations can be compared.
To date, the few published comparisons have focused on
survival and actuarial senescence patterns (e.g. Bronikowski
et al., 2002; Clubb et al., 2008; Lemaı̂tre et al., 2013).
Captive mammals show both a lower rate and later
onset of senescence than their wild counterparts, an effect
particularly pronounced in short-lived species (Tidière et al.,
2016). In zoological gardens, reproduction is sometimes
controlled (e.g. Rhyan, Miller & Fagerstone, 2013), but
when individuals are able to reproduce freely, captivity
offers a unique opportunity to assess reproductive senescence
in both sexes and for different reproductive traits when
resources are abundant. Comparing the rate of reproductive
senescence between captive and wild populations would
shed new light on how environmental conditions mitigate
reproductive senescence. Comparing birth rates between
wild and semi-captive (provisioned with food and shelters)
populations of ring-tailed lemurs (Lemur catta) suggests that
increased resource availability might potentially protect
against reproductive senescence. Although birth rates are
consistently higher in the semi-captive population, the
magnitude of the difference between the two environmental
conditions reaches its maximum at old ages (Fig. 3).
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Second, although most published studies focus on
the influence of the natal environment on reproductive
senescence, we should attempt to disentangle the roles
of natal versus current conditions on the age-dependent
pattern of reproductive performance. In Alpine marmots,
early and adult social environments have independent and
sometimes different effects depending on the life-history trait
of interest (Berger et al., 2015a). Interactive effects between
early and adult environments have also been reported in
the context of actuarial senescence in two ectothermic
species, the yellow-legged frog (Rana sierrae) and the long-lived
garter snake (Thamnophis elegans) (Miller et al., 2014). In the
context of reproductive senescence, the role of the current
environment may be particularly important if a lack of
resources reinforces the detrimental effects of old maternal
age (van den Heuvel et al., 2016). To date, the few studies
of the effects of environmental conditions during adult life
on age-specific changes in reproductive performance at the
population level indicate more intense senescence in clutch
size, egg volume and hatching success under high food
availability, likely because middle-aged individuals benefit
much more from favourable conditions than do young or
old individuals [e.g. Oro et al. (2014) on Audouin’s gull
Larus audouinii].

Third, we urge researchers to investigate the impact of
the environment on senescence in both sexes. In males,
such studies should provide an explanation for the striking
observation that similar secondary sexual traits evolved
in closely related species often show distinct patterns of
senescence. For instance, in some cervids antler size decreases
at old ages [e.g. Vanpé et al. (2007) on roe deer, Capreolus

capreolus], whereas it does not in others [e.g. red deer (Nussey
et al., 2009; Lemaı̂tre et al., 2014)]. Moreover, senescence of
antler size within a species can occur in some populations
(Mysterud et al., 2005) but not in others (Nussey et al., 2009).
This strongly suggests that the interaction between ecological
conditions and life histories shapes both the occurrence
and intensity of senescence in secondary sexual traits.
There is now good evidence that environmental variation
can have sex-specific effects on lifespan and actuarial
senescence (e.g. birds: Wilkin & Sheldon, 2009; mammals:
Garratt et al., 2015), and we expect a similar situation for
reproductive senescence. Assessing whether environmental
conditions have sex-specific effects on reproductive
senescence is of primary importance to understanding
the interplay between male and female reproductive
senescence.

Fourth, in the absence of a formal dedicated theoretical
framework, reproductive senescence is often grounded in
theories designed to explain the evolution of actuarial
senescence, such as the antagonistic pleiotropy theory of
ageing or the disposable soma theory (Lemaı̂tre et al., 2015).
Individuals that allocate extensively to reproduction early
in life are thus predicted to suffer from earlier or faster
reproductive senescence (Nussey et al., 2006; Reed et al.,

2008; Bouwhuis et al., 2010; Massot et al., 2011; Lemaı̂tre et al.,

2014). However, although both processes are underpinned by

somatic deterioration, whether long-term reproductive costs
should be expressed primarily in terms of reproductive or
actuarial senescence has not been considered, and how such
interplay might be influenced by environmental conditions
remains unknown.

VI. CONCLUSIONS

(1) Although empirical evidence of reproductive
senescence in the wild is now compelling, the study of
this biological process is still in its infancy and requires a
more comprehensive approach.

(2) Extending current research to all aspects of the female
reproductive cycle (e.g. oocyte production, maternal care)
and devoting efforts to the study of male reproductive
senescence (e.g. in pre- and post-copulatory traits) should
help to decipher the complexity of the interplay among
factors shaping individual fitness in free-ranging populations.

(3) We demonstrate the importance of considering
trade-offs in the study of reproductive senescence. For
instance, incorporating offspring size–number trade-offs in
females or pre- and post-copulatory trade-offs in males into
studies of reproductive senescence allow us to understand the
diversity of age-specific reproductive trajectories observed at
the intra- and inter-specific levels.

(4) Assessing the influence of environmental conditions
over the entire lifespan on reproductive senescence in
both sexes should provide important insights into the
dynamics of this process. Such studies are currently providing
important results in the field of actuarial senescence and
should be particularly important with regard to reproductive
senescence.

(5) We highlight that such investigations should create
exciting bridges between the ecology of senescence and
areas of research in evolutionary ecology such as the
study of mate choice, sperm competition and environmental
stochasticity.
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